Skip to main content
Log in

Experimental results for 25-mm and 51-mm rotating detonation rocket engine combustors

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

An ongoing rotating detonation rocket engine program is investigating the influence of combustor annulus radii on RDRE operating characteristics with flat-faced impinging injectors. To facilitate the isolation of all but the radius of curvature effects in the experiments, the annular gap was kept constant at 5 mm in combustors having either 25-mm or 51-mm outer diameter. The mixing processes were kept similar by utilizing injectors with the same net injector-to-annular gap area ratio (AR = 0.11), same radial separation distance of the orifices, and same center-of-gap impingement distance from the front-end wall. The wave dynamics, plenum pressure, and axial pressure profiles in these RDREs were compared over the mass flux and equivalence ratio ranges of \(80{-}400\,\text {kg/s/m}^{2}\) and 0.26\(-\)2.6, respectively, with gaseous methane–oxygen propellant. Experiments showed that stable one-wave operation would occur in the 25-mm RDRE at most mass fluxes where stable two-wave operation was established in the 51-mm RDRE. Stable one-wave operation with a single counter-rotating wave was maintained in the 51-mm RDRE at mass fluxes of \(240\,\text {kg/s/m}^{2}\) and below. Under these fueling conditions in the 25-mm RDRE, a counter-rotating wave also appeared while it operated with a single dominant wave. The wave spin speeds were typically 20–40% less than the Chapman–Jouguet detonation speed of the propellant and depended only on mass flux and wave number rather than the annulus diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Nicholls, J.A., Cullen, R.E., Ragland, K.W.: Feasibility studies of a rotating detonation wave rocket motor. J. Spacecr. Rockets 3(6), 893–898 (1966). https://doi.org/10.2514/3.28557

    Article  Google Scholar 

  2. Bykovskii, F.A., Zhdan, S.A., Vedermikov, E.F.: Continuous spin detonations. J. Propuls. Power 22(6), 1204–1216 (2006). https://doi.org/10.2514/1.17656

    Article  Google Scholar 

  3. Koch, J.V.: Nonlinear dynamics of rotating detonation waves. PhD Thesis, William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, WA (2020). http://hdl.handle.net/1773/45431

  4. Zhou, R., Wang, J.-P.: Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combust. Flame 159(12), 3632–3645 (2012). https://doi.org/10.1016/j.combustflame.2012.07.007

    Article  Google Scholar 

  5. Lu, F.K., Braun, E.M.: Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts. J. Propuls. Power 30(5), 1125–1142 (2014). https://doi.org/10.2514/1.B34802

    Article  Google Scholar 

  6. Chacon, F., Gambay, M.: Study of parasitic combustion in an optically accessible continuous wave rotating detonation engine. AIAA SciTech 2019 Forum, San Diego, CA, AIAA Paper 2019-0473 (2019). https://doi.org/10.2514/6.2019-0473

  7. Heiser, W.H., Pratt, D.T.: Thermodynamic cycle analysis of pulse detonation engines. J. Propuls. Power 18(1), 68–76 (2002). https://doi.org/10.2514/2.5899

    Article  Google Scholar 

  8. Rankin, B.A., Fotia, M.L., Naples, A.G., Stevens, C.A., Hoke, J.L., Kaemming, T.A., Theuerkauf, S.W., Schauer, F.R.: Overview of performance, application, and analysis of rotating detonation engine technologies. J. Propuls. Power 33(1), 131–143 (2017). https://doi.org/10.2514/1.B36303

    Article  Google Scholar 

  9. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511754708

    Book  Google Scholar 

  10. Kaneshige, M., Shepherd, J.E.: Detonation Database. Explosion Dynamics Laboratory Report FM97-8, California Institute of Technology, Pasadena, CA (1999). https://doi.org/10.7907/g3gs-4y69

  11. Schumaker, S.A., Knisely, A.M., Hoke, J.L., Rein, K.D.: Methane-oxygen detonation characteristics at elevated pre-detonation pressures. Proc. Combust. Inst. 38(3), 3623–3632 (2021). https://doi.org/10.1016/j.proci.2020.07.066

    Article  Google Scholar 

  12. Smith, R.D., Stanley, S.B.: Experimental investigation of rotating detonation rocket engines for space propulsion. J. Propuls. Power 37(3), 463–473 (2021). https://doi.org/10.2514/1.B37959

    Article  MathSciNet  Google Scholar 

  13. Kudo, Y., Nagura, Y., Kasahara, J., Sasamoto, Y., Matsuo, A.: Oblique detonation waves stabilized in rectangular-cross-section bent tubes. Proc. Combust. Inst. 33(2), 2319–2326 (2011). https://doi.org/10.1016/j.proci.2010.08.008

    Article  Google Scholar 

  14. Nakayama, H., Moriya, T., Kasahara, J., Matsuo, A., Sasamoto, Y., Matsuo, A.: Stable detonation wave propagation in rectangular-cross-section curved channels. Combust. Flame 159(2), 859–869 (2012). https://doi.org/10.1016/j.combustflame.2011.07.022

    Article  Google Scholar 

  15. Kawasaki, A., Inakawa, T., Kasahara, J., Goto, K., Matsuoka, K., Matsuo, A., Funaki, I.: Critical condition of inner cylinder radius for sustaining rotating detonation waves in rotating detonation engine thruster. Proc. Combust. Inst. 37, 3461–3469 (2019). https://doi.org/10.1016/j.proci.2018.07.070

    Article  Google Scholar 

  16. Fiorino, N.T., Schauer, F.R., Polanka, M.D., Schumaker, S.A., Sell, B.C.: Use of a partially pre-mixed injection scheme and pre-detonator in a small scale rotating detonation engine. AIAA Propulsion and Energy 2021 Forum, VIRTUAL EVENT, AIAA Paper 2021-3656 (2021). https://doi.org/10.2514/6.2021-3656

  17. Wyatt, J.J., Snow, N.J., Fiorino, N.T., Schauer, F.R., Polanka, M.D., Cho, K.Y.: Injection studies on a small-scale rotating detonation engine. AIAA SciTech 2022 Forum, San Diego, CA, AIAA Paper 2022-1114 (2022). https://doi.org/10.2514/6.2022-1114

  18. Goto, K., Ota, K., Kawasaki, A., Itouyama, N., Watanabe, H., Matsuoka, K., Kasahara, J., Matsuo, A., Funaki, I., Kawashima, H.: Cylindrical rotating detonation engine with propellant injection cooling. J. Propuls. Power 38(3), 410–420 (2022). https://doi.org/10.2514/1.B38427

    Article  Google Scholar 

  19. Fotia, M.L., Hoke, J., Schauer, F.: Experimental performance scaling of rotating detonation engines operated on gaseous fuels. J. Propuls. Power 33(5), 1187–1196 (2017). https://doi.org/10.2514/1.B36213

    Article  Google Scholar 

  20. Ishii, K., Kurata, W., Kawana, H., Ohno, K., Ikema, D.: Effects of combustor size on behavior of rotating detonation waves. 27th International Colloquium on the Dynamics of Explosions and Reactive Systems, Beijing, China (2019). http://www.icders.org/ICDERS2019/abstracts/ICDERS2019-251.pdf

  21. Koch, J.V., Chang, L., Upadhye, C., Chau, K., Kurosaka, M., Knowlen, C.: Influence of injector-to-annulus area ratio on rotating detonation engine operability. AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, AIAA Paper 2019-4038 (2019). https://doi.org/10.2514/6.2019-4038

  22. Ikema, D., Yokota, A., Kurata, W., Kawana, H., Ishii, K.: Propagation stability of rotating detonation waves using hydrogen/oxygen-enriched air mixtures. Trans. Jpn. Soc. Aeronaut. Space Sci. 61(6), 268–273 (2018). https://doi.org/10.2322/tjsass.61.268

    Article  Google Scholar 

  23. Prakash, S., Raman, V., Lietz, C.F., Hargus, W.A., Jr., Schumaker, S.A.: Numerical simulation of a methane-oxygen rotating detonation rocket engine. Proc. Combust. Inst. 38, 3777–3786 (2021). https://doi.org/10.1016/j.proci.2020.06.288

  24. Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. National Institute of Standards and Technology, Standard Reference Data Program. Gaithersburg (2018). https://doi.org/10.18434/T4/1502528

  25. Bennewitz, J.W., Bigler, B.R., Hargus, W.A., Danczyk, S.A., Smith, R.D.: Characterization of detonation wave propagation in a rotating detonation rocket engine using direct high-speed imaging. AIAA Propulsion and Energy 2018 Forum, Cincinnati, OH, AIAA Paper 2018-4688 (2018). https://doi.org/10.2514/6.2018-4688

  26. Evaluation of measurement data-guide to the expression of uncertainty in measurement, joint committee for guides in metrology. Technical Report JCGM 100:2008 (2008). https://www.bipm.org/documents/20126/2071204/JCGM-100-2008-E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6

  27. Koch, J.V., Washington, M.R., Kurosaka, M., Knowlen, C.: Operating characteristics of a CH\(_4\)/O\(_2\) rotating detonation engine in a backpressure controlled facility. AIAA SciTech 2019 Forum, San Diego, CA, AIAA Paper 2019-0475 (2019). https://doi.org/10.2514/6.2019-0475

  28. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonation of fuel-air mixtures. Combust. Explos. Shock Waves 42(4), 463–471 (2006). https://doi.org/10.1007/s10573-006-0076-9

    Article  Google Scholar 

  29. Connolly-Boutin, S., Joseph, V., Ng, H.D., Kiyanda, C.B.: Small-size rotating detonation engine: scaling and minimum mass flow rate. Shock Waves 31, 665–674 (2021). https://doi.org/10.1007/s00193-021-00991-2

    Article  Google Scholar 

Download references

Acknowledgements

Experiment assistance was provided by: Mark Ikeda, David Menn, Daniela Nankova, Noah Inahara, Tharun Sanker, and Lien Chang. Consultations with Bill Hargus and John Bennewitz from AFRL were greatly appreciated. This work was supported by AFOSR Grant FA 9550-18-1-9-0076 with Chiping Li as program manager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Knowlen.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on work that was presented at the 28th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Naples, Italy, June 19–24, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knowlen, C., Mundt, T. & Kurosaka, M. Experimental results for 25-mm and 51-mm rotating detonation rocket engine combustors. Shock Waves 33, 237–252 (2023). https://doi.org/10.1007/s00193-023-01120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-023-01120-x

Keywords

Navigation