Skip to main content
Log in

Critical shock initiation characteristics of TNT with different charging types

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

To study the shock wave initiation characteristics of 2,4,6-trinitrotoluene (TNT) under different charging types, the shock wave pressure and shock wave attenuation of standard Pentolite explosives under different diaphragm thicknesses were quantitatively studied using the ion probe method. The gap tests of three explosives were carried out, including pressed TNT without restraint, pressed TNT with steel pipe restraint, and cast TNT with steel pipe restraint. The shock wave initiation pressures of TNT under the three different conditions were compared. Moreover, combined with the numerical simulation technology, the critical initiation pressure and the pressure cloud diagram of the gap test of TNT were obtained, and the dynamic change process of the shock wave in the diaphragm was acquired, which was difficult to measure in the experiments. The results showed that the critical initiation pressure of pressed TNT was significantly lower than that of cast TNT and that restraint can reduce the measured critical initiation pressure of TNT under certain conditions. Therefore, the research results may provide a basis for the damage range of TNTs with different charging types and the determination of the safety protection distance of shock wave initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

All data, models, or codes used during the study are available from the corresponding author by request.

References

  1. Zhang, X.Q., Yuan, J.N., Selvaraj, G., Ji, G.F., Wei, D.Q.: Towards the low-sensitive and high-energetic co-crystal explosive CL-20/TNT: from intermolecular interactions to structures and properties. Phys. Chem. Chem. Phys. 20(5), 17253–17261 (2018). https://doi.org/10.1039/C8CP01841C

    Article  Google Scholar 

  2. Lease, N., Kay, L.M., Brown, G.W., Manner, V.W.: Modifying nitrate ester sensitivity properties using explosive isomers. Cryst. Growth Des. 19(11), 6708–6714 (2019). https://doi.org/10.1021/acs.cgd.9b01062

    Article  Google Scholar 

  3. Hang, G.Y., Yu, W.L., Tao, W., Wang, J.T.: Theoretical investigations into effects of adulteration crystal defect on properties of CL-20/TNT cocrystal explosive. Comput. Mater. Sci. 156, 77–83 (2019). https://doi.org/10.1016/j.commatsci.2018.09.027

    Article  Google Scholar 

  4. Dattelbaum, D.M., Sheffield, S.A., Bartram, B.D., Gibson, L.L., Bowden, R.R., Schilling, B.F.: The shock sensitivities of nitromethane/methanol mixtures. J. Phys. Conf. Ser. 500(18), 182009 (2014). https://doi.org/10.1088/1742-6596/500/18/182009

    Article  Google Scholar 

  5. Xue, X.G., Wen, Y.S., Long, X.P., Li, J.S., Zhang, C.Y.: Influence of dislocations on the shock sensitivity of RDX: molecular dynamics simulations by reactive force field. J. Phys. Chem. C 119(24), 13735–13742 (2015). https://doi.org/10.1021/acs.jpcc.5b03298

    Article  Google Scholar 

  6. Belik, A.V., Potemkin, V.A., Sluka, S.N.: Shock sensitivity analysis of organic explosives. Combust. Explos. Shock Waves 35(5), 562–567 (1999). https://doi.org/10.1007/BF02674502

  7. Tan, B., Long, X., Peng, R., Li, H., Jin, B., Chu, S.: On the shock sensitivity of explosive compounds with small-scale gap test. J. Phys. Chem. A 115(38), 10610–10616 (2011). https://doi.org/10.1021/jp204814f

    Article  Google Scholar 

  8. Jing, P.L., Lochert, I.J., Daniel, M.A., Franson, M.D.: Shock sensitivity studies for PBXN-109. Propell. Explos. Pyrot. 41(3), 562–571 (2016). https://doi.org/10.1002/prep.201500336

    Article  Google Scholar 

  9. Balagansky, I., Stepanov, A.: Numerical simulation of composition b high explosive charge desensitization in gap test assembly after loading by precursor wave. Shock Waves 26(2), 109–115 (2016). https://doi.org/10.1007/s00193-015-0584-1

    Article  Google Scholar 

  10. Nandlall, D.: Determination of a measure of sensitivity to shock detonate an explosive as a function of its shock parameters. Propell. Explos. Pyrot. 44(11), 1423–1431 (2019). https://doi.org/10.1002/prep.201800383

    Article  Google Scholar 

  11. Zhang, J., Jackson, T.L.: Effect of microstructure on the detonation initiation in energetic materials. Shock Waves 29(2), 327–338 (2019). https://doi.org/10.1007/s00193-017-0796-7

    Article  Google Scholar 

  12. Kim, B., Park, J., Yoh, J.J.: Analysis on shock attenuation in gap test configuration for characterizing energetic materials. J. Appl. Phys. 119(14), 605–639 (2016). https://doi.org/10.1063/1.4945777

    Article  Google Scholar 

  13. Giglmaier, M., Quaatz, J.F., Gawehn, T., Gülhan, A., Adams, N.A.: Numerical and experimental investigations of pseudo-shock systems in a planar nozzle: impact of bypass mass flow due to narrow gaps. Shock Waves 24(2), 139–156 (2014). https://doi.org/10.1007/s00193-013-0475-2

    Article  Google Scholar 

  14. Paton, R.T., Skews, B.W., Rubidge, S., Snow, J.: Imploding conical shock waves. Shock Waves 23(4), 317–324 (2013). https://doi.org/10.1007/s00193-012-0386-7

    Article  Google Scholar 

  15. Qiang, H.F., Liu, Y.X., Wang, D.D., Wang, X.R., Geng, B., Wang, G.: Numerical simulation study of composite solid propellant small scale gap test. AIP Adv. 11(1), 1–17 (2021). https://doi.org/10.1063/5.0039853

    Article  Google Scholar 

  16. Sudac, D., Valkovic, V., Nad, K., Obhodas, J.: The underwater detection of TNT explosive. IEEE Trans. Nucl. Sci. 58(2), 547–551 (2011). https://doi.org/10.1109/TNS.2011.2112671

    Article  Google Scholar 

  17. Tochilin, S.N., Komissarov, P.V., Basakina, S.S.: Assessment of errors in determining the TNT equivalency of air explosions. Russ. J. Phys. Chem. B 14(4), 631–635 (2020). https://doi.org/10.1134/S1990793120040259

    Article  Google Scholar 

  18. Dubovik, A.V.: Approximate method for calculating the impact sensitivity indices of solid explosive mixtures. Combust. Explos. Shock Waves 37(1), 99–105 (2001). https://doi.org/10.1023/A:1002829028043

    Article  Google Scholar 

  19. Kuhl, A.L., Bell, J.B., Beckner, V.E., Reichenbach, H.: Gasdynamic model of turbulent combustion in TNT explosions. Proc. Combust. Inst. 33(2), 2177–2185 (2011). https://doi.org/10.1016/j.proci.2010.07.085

  20. Bassett, W.P., Johnson, B.P., Dlott, D.D.: Hot spot chemistry in several polymer-bound explosives under nanosecond shock conditions. Propell. Explos. Pyrot. 45(2), 338–346 (2020). https://doi.org/10.1002/prep.201900249

    Article  Google Scholar 

  21. Belskii, B.M.: Model for TNT combustion under shock compression. Combust. Explos. Shock Waves 48(3), 328–334 (2012). https://doi.org/10.1134/S0010508212030100

  22. Bowden, P.R., Chellappa, R.S., Dattelbaum, D.M., Manner, V.W., Mack, N.H., Liu, Z.: The high-pressure phase stability of 2,4,6-trinitrotoluene (TNT). J. Phys. Conf. Ser. 500(5), 052006 (2014). https://doi.org/10.1088/1742-6596/500/5/052006

    Article  Google Scholar 

  23. Campbell, A.W., Davis, W.C., Ramsay, J.B., Travis, J.R.: Shock initiation of solid explosives. Phys. Fluids 4(4), 511 (1961). https://doi.org/10.1063/1.1706354

    Article  Google Scholar 

  24. Liu, H., He, Y.H., Li, J.L., Zhou, Z.X.: ReaxFF molecular dynamics simulations of shock induced reaction initiation in TNT. AIP Adv. 9(1), 015202 (2019). https://doi.org/10.1063/1.5047920

    Article  Google Scholar 

  25. Cao, W., He, Z.Q., Chen, W.H.: Experimental and numerical study on the afterburning effect of TNT. Mater. Sci. Forum 767, 46–51 (2013). https://doi.org/10.4028/www.scientific.net/MSF.767.46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Xia.

Additional information

Communicated by P. Hazell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.H., Xia, M. & Jiang, N. Critical shock initiation characteristics of TNT with different charging types. Shock Waves 33, 39–49 (2023). https://doi.org/10.1007/s00193-022-01115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-022-01115-0

Keywords

Navigation