Skip to main content
Log in

Evolution of scalar and velocity dynamics in planar shock-turbulence interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave–mixing-layer interaction, and shock-wave–vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock–turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence–scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors’ knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a passive (i.e., chemically inert) scalar in the presence of a shock wave is thus investigated using high-resolution numerical simulations. The starting point of the analysis relies on the transport equations of the variance of the mixture fraction, i.e., a fuel inlet tracer that quantifies the mixing between fuel and oxidizer. The influence of the shock wave is investigated for three distinct values of the shock Mach number M, and the obtained results are compared to reference solutions featuring no shock wave. The computed solutions show that the shock wave significantly modifies the scalar field topology. The larger the value of M, the stronger is the amplification of the alignment of the scalar gradient with the most compressive principal direction of the strain-rate tensor, which signifies the enhancement of scalar mixing with the shock Mach number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. A condition that is more constraining than the standard criterion \(k_\mathrm {max}\eta _\mathrm {K}=3/2\) with \(k_\mathrm {max}=\pi /\Delta x_{1,\mathrm {i}}\).

  2. This expression is used just for the sake of conciseness; it denotes the principal direction associated with the intermediate eigenvalue.

Abbreviations

\({\varvec{A}}\) :

Velocity gradient tensor

\({\varvec{A}}^*\) :

Traceless velocity gradient tensor

\(c_p\) :

Heat capacity at constant pressure

\(c_v\) :

Heat capacity at constant volume

DNS:

Direct numerical simulation

D :

Mixture fraction molecular diffusivity

\(D^\mathrm {m}_{\alpha }\) :

Diffusivity of species \(\alpha \) into the mixture

\({\varvec{e}}_i\) :

Principal direction

\(e_\mathrm {t}\) :

Total energy

F :

Flatness factor

\({\varvec{g}}^\xi \) :

Mixture fraction (tracer) gradient

\(g^\xi _i\) :

i-Component of the scalar gradient

\(h_{\alpha }\) :

Enthalpy of the \(\alpha \)th species

ICF:

Inertial confinement fusion

\({\mathcal {J}}_i\) :

i-Component of the heat flux

\(k_0\) :

Wave number at the peak energy

\(l_\xi \) :

Scalar integral length scale

\(l_\mathrm {t}\) :

Turbulence integral length scale

LIA:

Linear interaction analysis

\(L_i\) :

Computational domain dimensions

M :

Mach number

\({\varvec{n}}_\xi \) :

Scalar gradient unit vector

\({\mathcal {N}}_\mathrm {sp}\) :

Total number of species

\(N_\xi \) :

Scalar dissipation rate (SDR)

\(N_{x_i}\) :

Number of nodes along direction i

p :

Pressure

PDF:

Probability density function

\({P}(\xi )\) :

PDF of \(\xi \)

\(\widetilde{{P}}(\xi )\) :

Favre-averaged PDF of \(\xi \)

\({\varvec{q}}\) :

Conservative vector

\(Q_\varOmega \) :

Second invariant of \(\varvec{\varOmega }\)

\(Q^*\) :

Second invariant of \({\varvec{A}}^*\)

\(R^*\) :

Third invariant of \({\varvec{A}}^*\)

\({\mathcal {R}}\) :

Universal gas constant

\(\text {Re}\) :

Reynolds number

\(\text {Re}_\mathrm {t}\) :

Turbulent Reynolds number

\(\text {Re}_\lambda \) :

Taylor Reynolds number

RMS:

Root mean square

SDR:

Scalar dissipation rate

STI:

Shock–turbulence interaction

\({\varvec{S}}\) :

Symmetric part of \({\varvec{A}}\)

\(S_{ij}\) :

Strain-rate tensor

T :

Temperature of the mixture

TKE:

Turbulent kinetic energy

TSI:

Turbulence–scalar interaction

\(u_i\) :

Velocity component in direction i

\(u_\mathrm {rms}\) :

\(u_\mathrm {rms}=\sqrt{2k/3}\) with k the TKE

\(U_\mathrm {S}\) :

Shock wave propagation velocity

\(V_{\alpha i}\) :

i-Component of diffusion velocity

\(V_i^\mathrm {c}\) :

i-Component of correction velocity

WENO:

Weighted essentially non-oscillatory

\({\varvec{W}}\) :

Stretching vector

\({\mathcal {W}}\) :

Molecular mass of the mixture

\({\mathcal {W}}_{\alpha }\) :

Molecular mass of chemical species \(\alpha \)

\(x_i\) :

Cartesian coordinates

\(X_{\alpha }\) :

Molar fraction of chemical species \(\alpha \)

\(Y_{\alpha }\) :

Mass fraction of chemical species \(\alpha \)

\(\delta _\mathrm {S}\) :

Shock thickness

\(\delta _\mathrm {n}\) :

Numerical shock thickness

\(\Delta {M}\) :

\(\Delta {M}={M}-1\)

\(\Delta x_i\) :

Spatial resolution in direction i

\(\varepsilon \) :

Turbulence dissipation rate

\(\varepsilon _\xi \) :

Turbulent SDR of \(\xi \)

\(\eta _\mathrm {K}\) :

Kolmogorov length scale

\(\lambda \) :

Thermal conductivity of the mixture

\(\lambda _i\) :

Eigenvalues of \({\varvec{A}}\)

\(\lambda _i^*\) :

Normalized eigenvalues of \({\varvec{A}}\) (\(\lambda _i \eta ^2/\nu \))

\(\varLambda _i\) :

\(\varLambda _i=\sqrt{6} \lambda _i/\sqrt{\lambda _1^2+\lambda _2^2+\lambda _3^2}\)

\(\mu \) :

Molecular dynamic (shear) viscosity

\(\nu \) :

Molecular kinematic viscosity

\(\mu _4^\xi \) :

Kurtosis of distribution \({{P}}(\xi )\)

\(\varvec{\omega }\) :

Vorticity vector

\(\varvec{\varOmega }\) :

Anti-symmetric part of \({\varvec{A}}\)

\(\xi \) :

Mixture fraction (fuel inlet tracer)

\(\rho \) :

Density of the mixture

\(\tau _{ij}\) :

Viscous stress tensor

\(\theta _k\) :

Orientation \(\theta _k=({\varvec{n}}_\xi ,{\varvec{e}}_k)\)

\(\varTheta \) :

Normalized dilatation variance

\({\dot{\omega }}_{\alpha }\) :

Production rate of chemical species \(\alpha \)

References

  1. Waitz, I.A., Marble, F.E., Zukoski, E.E.: Investigation of a contoured wall injector for hypervelocity mixing augmentation. AIAA J. 31, 1014–1021 (1993). https://doi.org/10.2514/3.11723

    Article  Google Scholar 

  2. Marble, F.E.: Gasdynamic enhancement of non-premixed combustion. Proc. Combust. Inst. 25, 1–12 (1994). https://doi.org/10.1016/S0082-0784(06)80621-1

    Article  Google Scholar 

  3. Huh, H., Driscoll, J.F.: Shock-wave-enhancement of the mixing and the stability limits of supersonic hydrogen-air jet flames. Proc. Combust. Inst. 26, 2933–2939 (1996). https://doi.org/10.1016/S0082-0784(96)80135-4

    Article  Google Scholar 

  4. Huh, H., Kim, J., Driscoll, J.F.: Measured characteristics of flow and combustion in supersonic flame/shock wave interaction. AIAA Paper 2001-3935 (1996). https://doi.org/10.2514/6.2001-3935

  5. Layes, G., Le Métayer, O.: Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys. Fluids 19, 042105 (2007). https://doi.org/10.1063/1.2720597

    Article  MATH  Google Scholar 

  6. Morgan, B., Duraisamy, K., Nguyen, N., Kawai, S., Lele, S.K.: Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J. Fluid Mech. 729, 231–284 (2013). https://doi.org/10.1017/jfm.2013.301

    Article  MathSciNet  MATH  Google Scholar 

  7. Grasso, F., Pirozzoli, S.: Shock-wave–vortex interactions: Shock and vortex deformations, and sound production. Theor. Comput. Fluid Dyn. 13, 421–456 (2000). https://doi.org/10.1007/s001620050121

    Article  MATH  Google Scholar 

  8. Gatski, T.B., Bonnet, J.P.: Compressibility, Turbulence and High Speed Flows, 2nd edn. Academic Press (Elsevier), Amsterdam (2013). https://doi.org/10.1016/B978-0-12-397027-5.00009-5

    Book  Google Scholar 

  9. Hirschfelder, J.O., Curtiss, C.F.: Molecular Theory of Gases and Liquids. Wiley, New York (1969)

    MATH  Google Scholar 

  10. Martinez Ferrer, P.J., Buttay, R., Lehnasch, G., Mura, A.: A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solvers. Comput. Fluids 89, 88–210 (2014). https://doi.org/10.1016/j.compfluid.2013.10.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Mahesh, K., Lele, S.K., Moin, P.: The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353–379 (1997). https://doi.org/10.1017/S0022112097004576

    Article  MathSciNet  MATH  Google Scholar 

  12. Jamme, S.: Etude de l’interaction entre une turbulence homogène isotrope et une onde de choc. PhD Thesis, Toulouse University - INPT (1998)

  13. Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101 (2009). https://doi.org/10.1063/1.3275856

    Article  MATH  Google Scholar 

  14. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987). https://doi.org/10.1016/0021-9991(87)90041-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Ristorcelli, J.R., Blaisdell, G.A.: Consistent initial conditions for the DNS of compressible turbulence. Phys. Fluids 9, 4–6 (1997). https://doi.org/10.1063/1.869152

    Article  Google Scholar 

  16. Reveillon, J.: Numerical procedures to generate and to visualize flow fields from analytical or experimental statistics. J. Flow Vis. Image Proc. 12, 251–269 (2005). https://doi.org/10.1615/JFlowVisImageProc.v12.i3.30

    Article  Google Scholar 

  17. Larsson, J., Bermejo-Moreno, I., Lele, S.K.: Reynolds and Mach number effects in canonical shock–turbulence interaction. J. Fluid Mech. 717, 293–321 (2013). https://doi.org/10.1017/jfm.2012.573

    Article  MathSciNet  MATH  Google Scholar 

  18. Ryu, J., Livescu, D.: Turbulence structure behind the shock in canonical shock–vortical turbulence interaction. J. Fluid Mech. 756, R1-1–R1-12 (2014). https://doi.org/10.1017/jfm.2014.477

    Article  Google Scholar 

  19. Buttay, R., Lehnasch, G., Mura, A.: Analysis of small-scale scalar mixing processes in highly under-expanded jets. Shock Waves 26, 193–212 (2016). https://doi.org/10.1007/s00193-015-0599-7

    Article  Google Scholar 

  20. Martinez Ferrer, P.J., Lehnasch, G., Mura, A.: Compressibility and heat release effects in high-speed reactive mixing layers, Part I: Growth rates and turbulence characteristics. Combust. Flame 180, 284–303 (2017). https://doi.org/10.1016/j.combustflame.2016.09.008

    Article  Google Scholar 

  21. Buttay, R., Gomet, L., Lehnasch, G., Mura, A.: Highly resolved numerical simulation of combustion downstream of a rocket engine igniter. Shock Waves 27, 655–674 (2017). https://doi.org/10.1007/s00193-017-0715-y

    Article  Google Scholar 

  22. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178, 81–117 (2002). https://doi.org/10.1006/jcph.2002.7021

    Article  MathSciNet  MATH  Google Scholar 

  23. Larsson, J., Cook, A., Lele, S.K., Moin, P., Cabot, B., Sjögreen, B., Yee, H., Zhong, X.: Computational issues and algorithm assessment for shock/turbulence interaction problems. J. Phys. Conf. Ser. 78, 012014 (2007). https://doi.org/10.1088/1742-6596/78/1/012014

    Google Scholar 

  24. Tian, Y., Jaberi, F.A., Li, Z., Livescu, D.: Numerical study of variable density turbulence interaction with a normal shock wave. J. Fluid Mech. 829, 551–588 (2017). https://doi.org/10.1017/jfm.2017.542

    Article  MathSciNet  Google Scholar 

  25. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 65–94 (1995). https://doi.org/10.1017/S0022112095000462

    Article  MathSciNet  MATH  Google Scholar 

  26. Lesieur, M., Métais, O., Comte, P.: Large-Eddy Simulation of Turbulence. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  27. Moore, F.K.: Unsteady oblique interaction of a shock wave with a plane disturbance. NACA Report TR-1165 (1954)

  28. Ribner, H.S.: Shock–turbulence interaction and the generation of noise. NACA Report TR-1233 (1954)

  29. Ribner, H.S.: Convection of a pattern of vorticity through a shock wave. NACA Report TR-1164 (1954)

  30. Ribner, H.S.: Spectra of noise and amplified turbulence emanating from shock–turbulence interaction. AIAA J. 25, 436–442 (1987). https://doi.org/10.2514/3.9642

    Article  Google Scholar 

  31. Chassaing, P., Antonia, R .A., Anselmet, F., Joly, L., Sarkar, S.: Variable Density Turbulence, Fluid Mechanics and Its Applications, vol. 69. Kluwer, Dordrecht (2002). https://doi.org/10.1007/978-94-017-0075-7

    Book  MATH  Google Scholar 

  32. Barre, S., Alem, D., Bonnet, J.P.: Experimental study of a normal shock/homogeneous turbulence interaction. AIAA J. 34, 968–974 (1996). https://doi.org/10.2514/3.13175

    Article  Google Scholar 

  33. Blin, E.: Etude experimentale d’une interaction entre une turbulence libre et une onde de choc. PhD Thesis, Paris VI University (1993)

  34. Jacquin, L., Blin, E., Geffroy, P.: An experiment on free turbulence/shock wave interaction. In: Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U., Whitelaw, J.H. (eds.) Turbulent Shear Flows, pp. 229–248. Springer, Berlin (1993). https://doi.org/10.1007/978-3-642-77674-8_17

    Chapter  Google Scholar 

  35. Andreopoulos, Y., Agui, J.H., Briassulis, G.: Shock-wave–turbulence interactions. Ann. Rev. Fluid Mech. 32, 309–345 (2000). https://doi.org/10.1146/annurev.fluid.32.1.309

    Article  MathSciNet  MATH  Google Scholar 

  36. Agui, J.H., Briassulis, G., Andreopoulos, Y.: Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J. Fluid Mech. 524, 143–195 (2005). https://doi.org/10.1017/S0022112004002514

    Article  MATH  Google Scholar 

  37. Donzis, D.A.: Shock structure in shock–turbulence interactions. Phys. Fluids 24, 126101 (2012). https://doi.org/10.1063/1.4772064

    Article  Google Scholar 

  38. Jamme, S., Cazalbou, J.B., Torres, F., Chassaing, P.: Direct numerical simulation of the interaction between a shock wave and various types of isotropic turbulence. Flow Turbul. Combust. 68, 227–268 (2002). https://doi.org/10.1023/A:1021197225166

    Article  MATH  Google Scholar 

  39. Livescu, D., Ryu, J.: Vorticity dynamics after the shock–turbulence interaction. Shock Waves 26, 241–251 (2016). https://doi.org/10.1007/s00193-015-0580-5

    Article  Google Scholar 

  40. Hannappel, R., Friedrich, R.: Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence. Appl. Sci. Res. 54, 205–221 (1995). https://doi.org/10.1007/BF00849117

    Article  MATH  Google Scholar 

  41. Donzis, D.A.: Amplification factors in shock–turbulence interactions: Effect of shock thickness. Phys. Fluids 24, 126101 (2012). https://doi.org/10.1063/1.3676449

    Article  Google Scholar 

  42. Borghi, R.: On the structure and morphology of turbulent premixed flames. In: Casci, C. (ed.) Recent Advances in the Aerospace Science, pp. 117–138. Plenum Publishing Corporation, New York (1985). https://doi.org/10.1007/978-1-4684-4298-4_7

    Chapter  Google Scholar 

  43. Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1988). https://doi.org/10.1016/S0082-0784(88)80355-2

    Article  Google Scholar 

  44. Mura, A., Champion, M.: Relevance of the Bray number in the small-scale modeling of turbulent premixed flame. Combust. Flame 156, 729–733 (2009). https://doi.org/10.1016/j.combustflame.2008.11.021

    Article  Google Scholar 

  45. Clavin, P., Searby, G.: Combustion Waves and Fronts in Flows: Flames, Shocks, Detonations, Ablation Fronts and Explosion of Stars. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  46. Lee, S., Lele, S.K., Moin, P.: Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533–562 (1993). https://doi.org/10.1017/S0022112093003519

    Article  Google Scholar 

  47. Tsinober, A.: An Informal Conceptual Introduction to Turbulence, Fluid Mechanics and Its Applications Series, vol. 92. Springer, New York (2009). https://doi.org/10.1007/978-90-481-3174-7

    Book  MATH  Google Scholar 

  48. Hamlington, P.E., Schumacher, J., Dahm, W.J.A.: Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows. Phys. Fluids 20, 111703 (2008). https://doi.org/10.1063/1.3021055

    Article  MATH  Google Scholar 

  49. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  50. Lumley, J.L.: Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123–176 (1979). https://doi.org/10.1016/S0065-2156(08)70266-7

    Article  MATH  Google Scholar 

  51. Ashurst, W.T., Kerstein, A.R., Kerr, R.M., Gibson, C.H.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 2343–2353 (1987). https://doi.org/10.1063/1.866513

    Article  Google Scholar 

  52. Tsinober, A., Kit, E., Dracos, T.: Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169–192 (1992). https://doi.org/10.1017/S0022112092002325

    Article  Google Scholar 

  53. Vincent, A., Meneguzzi, M.: The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245–254 (1994). https://doi.org/10.1017/S0022112094003319

    Article  MATH  Google Scholar 

  54. Tsinober, A., Shtilman, L., Vaisburd, H.: A study of properties of vortex stretching and enstrophy generation in numerical and laboratory turbulence. Fluid Dyn. Res. 21, 477–494 (1997). https://doi.org/10.1016/S0169-5983(97)00022-1

    Article  MathSciNet  MATH  Google Scholar 

  55. Perry, A.E., Chong, M.S.: A description of eddying motions and flow patterns using critical-point concepts. Ann. Rev. Fluid Mech. 19, 125–155 (1987). https://doi.org/10.1146/annurev.fl.19.010187.001013

    Article  Google Scholar 

  56. Perry, A.E., Chong, M.S.: Topology of flow patterns in vortex motions and turbulence. Appl. Sci. Res. 53, 357–374 (1994). https://doi.org/10.1007/BF00849110

    Article  MATH  Google Scholar 

  57. Pirozzoli, S., Grasso, F.: Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures. Phys. Fluids 16, 4386–4407 (2004). https://doi.org/10.1063/1.1804553

    Article  MATH  Google Scholar 

  58. Martin, J., Ooi, A., Chong, M.S., Soria, J.: Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids 10, 2336–2346 (1998). https://doi.org/10.1063/1.869752

    Article  MathSciNet  MATH  Google Scholar 

  59. Elsinga, G.E., Marusic, I.: Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514–539 (2010). https://doi.org/10.1017/S0022112010003381

    Article  MATH  Google Scholar 

  60. Tian, T., Jaberi, F., Livescu, D., Li, Z.: Numerical simulation of multi-fluid shock–turbulence interaction. AIP Conf. Proc. 1793, 150010 (2017). https://doi.org/10.1063/1.4971739

    Article  Google Scholar 

  61. Tian, T., Jaberi, F., Livescu, D., Li, Z.: Numerical study of shock–turbulence interactions in variable density flows. In: Proceedings of the Tenth International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago (USA), (July 2017)

  62. Panchev, S., ter Haar, D.: Random Functions and Turbulence, 1st edn. Pergamon Press (Elsevier), Oxford (1971). https://doi.org/10.1016/B978-0-08-015826-6.50002-5

  63. Nomura, K.K., Elgobashi, S.E.: Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence. Phys. Fluids 4, 606–625 (1992). https://doi.org/10.1063/1.858330

    Article  MATH  Google Scholar 

  64. Pumir, A.: A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids 6, 2118–2132 (1994). https://doi.org/10.1063/1.868216

    Article  MathSciNet  MATH  Google Scholar 

  65. Diamessis, P.J., Nomura, K.K.: Interaction of vorticity, rate-of-strain and scalar gradient in stratified homogeneous sheared turbulence. Phys. Fluids 12, 1166–1188 (2000). https://doi.org/10.1063/1.870369

    Article  MATH  Google Scholar 

  66. Gonzalez, M., Paranthoën, P.: Effect of density step on stirring properties of a strain flow. Fluid Dyn. Res. 41, 035508 (2009). https://doi.org/10.1088/0169-5983/41/3/035508

    Article  MATH  Google Scholar 

  67. Gonzalez, M., Paranthoën, P.: Effects of variable mass density on the kinematics of scalar gradient. Phys. Fluids 23, 075107 (2011). https://doi.org/10.1063/1.3609281

    Article  Google Scholar 

  68. Chakraborty, N., Champion, M., Mura, A., Swaminathan, N.: Scalar dissipation rate approach. In: Bray, K.N.C., Swaminathan, N. (eds.) Turbulent Premixed Flames, pp. 74–102. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  69. Bouali, Z., Duret, B., Demoulin, F.X., Mura, A.: DNS analysis of small-scale turbulence–scalar interactions in evaporating two-phase flows. Int. J. Multiph. Flow 85, 326–335 (2016). https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.020

    Article  MathSciNet  Google Scholar 

  70. Gonzalez, M.: Influence of vorticity alignment upon scalar gradient production in three-dimensional, isotropic turbulence. J. Phys. Conf. Ser. 318, 052041 (2011). https://doi.org/10.1088/1742-6596/318/5/052041

    Article  Google Scholar 

  71. Ganapathisubramani, B., Lakshminarasimhan, K., Clemens, N.T.: Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141–175 (2008). https://doi.org/10.1017/S0022112007009706

    Article  MATH  Google Scholar 

  72. Jimenez, J., Wray, A., Saffman, P., Rogallo, R.: The structure of intense vorticity in homogeneous turbulence. J. Fluid Mech. 255, 65–90 (1993). https://doi.org/10.1017/S0022112093002393

    Article  MathSciNet  MATH  Google Scholar 

  73. Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133, 193–196 (2003). https://doi.org/10.1016/S0010-2180(02)00565-5

    Article  Google Scholar 

  74. Gomet, L., Robin, V., Mura, A.: Influence of residence and scalar mixing time scales in non-premixed combustion in supersonic turbulent flows. Combust. Sci. Technol. 184, 1471–1501 (2013). https://doi.org/10.1080/00102202.2012.690259

    Article  Google Scholar 

  75. Markides, C.N., Mastorakos, E.: Measurements of the statistical distribution of the scalar dissipation rate in turbulent axisymmetric plumes. Flow Turb. Combust. 81, 221–234 (2008). https://doi.org/10.1007/s10494-007-9115-1

    Article  MATH  Google Scholar 

  76. Vedula, P., Yeung, P.K., Fox, R.O.: Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 29–60 (2001). https://doi.org/10.1017/S0022112000003207

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is part of the PhD Thesis of R. Boukharfane, financially supported by Region Poitou-Charentes. It was granted access to the resources of IDRIS under the allocations x20142a0912 and x20142b7251 made by GENCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mura.

Additional information

Communicated by M.-S. Liou and A. Higgins.

Appendices

Appendix 1: Some results of order of magnitude analyses

In a first step of the order of magnitude analysis (OMA), the ratio \(l_\mathrm {t} / \delta _\mathrm {S}\) can be recast as follows

$$\begin{aligned} \frac{l_\mathrm {t}}{\delta _\mathrm {S}}=\frac{l_\mathrm {t}}{\eta _\mathrm {K}} \cdot \frac{\eta _\mathrm {K}}{\delta _\mathrm {S}} \end{aligned}$$
(18)

where the order of magnitude (OM) of the first non-dimensional ratio present in the right-hand side (RHS), i.e., \(l_\mathrm {t}/\eta _\mathrm {K}\), is known to be \({\mathcal {O}}\left( \text {Re}_\mathrm {t}^{3/4} \right) ={\mathcal {O}}\left( \text {Re}_{\uplambda }^{3/2} \right) \).

For moderate Mach number values, the shock wave thickness \(\delta _\mathrm {S}\) scales as \(\nu / (c \cdot \Delta {M})\), while the Kolmogorov length scale is given by \({\mathcal {O}}\left( \nu ^{3/4} / \varepsilon ^{1/4} \right) \), in such a manner that the ratio of the two length scales is

$$\begin{aligned} \frac{\eta _\mathrm {K}}{\delta _\mathrm {S}}= & {} {\mathcal {O}}\left( \frac{\nu ^{3/4}}{\varepsilon ^{1/4}} \cdot \frac{c}{\nu } \cdot \Delta {M} \right) \nonumber \\= & {} {\mathcal {O}}\left( \frac{u_\mathrm {rms}}{\nu ^{1/4} \cdot \varepsilon ^{1/4}} \cdot \frac{c}{u_\mathrm {rms}} \cdot \Delta {M} \right) \nonumber \\= & {} {\mathcal {O}}\left( \frac{u_\mathrm {rms}}{u_\mathrm {K}} \cdot \frac{c}{u_\mathrm {rms}} \cdot \Delta {M} \right) \end{aligned}$$
(19)

with \(u_\mathrm {K}={\mathcal {O}}\left( \nu ^{1/4} \cdot \varepsilon ^{1/4} \right) \) the OM of the Kolmogorov velocity fluctuation, one may thus obtain

$$\begin{aligned} \frac{\eta _\mathrm {K}}{\delta _\mathrm {S}} = {\mathcal {O}}\left( \text {Re}_{\uplambda }^{1/2} \cdot \frac{\Delta {M}}{{M}_\mathrm {t}} \right) \end{aligned}$$
(20)

where the scaling of \(u_\mathrm {rms}/u_\mathrm {K}={\mathcal {O}}\left( \text {Re}_\mathrm {t}^{1/4} \right) ={\mathcal {O}}\left( \text {Re}_{\uplambda }^{1/2} \right) \) has been used.

Finally, the above analysis leads to

$$\begin{aligned} \frac{l_\mathrm {t}}{\delta _\mathrm {S}} ={\mathcal {O}}\left( \frac{\Delta {M}}{{M}_\mathrm {t}} \cdot \text {Re}_{\uplambda }^2 \right) ={\mathcal {O}}\left( \frac{\Delta {M}}{{M}_\mathrm {t}} \cdot \text {Re}_\mathrm {t} \right) \end{aligned}$$
(21)

Appendix 2: Scalar variance and SDR transport

The transport equation for the scalar variance writes:

$$\begin{aligned} \frac{\partial }{\partial t} ( \overline{\rho \xi ^{\prime \prime 2}}) + \frac{\partial \overline{{F}_k^{\xi ^{\prime \prime 2}}}}{\partial x_k}= & {} -\, 2\overline{\rho D \frac{\partial \xi ^{\prime \prime }}{\partial x_k}\frac{\partial \xi ^{\prime \prime }}{\partial x_k}} \nonumber \\&-\, 2\overline{\rho u^{\prime \prime }_k \xi ^{\prime \prime }}\frac{\partial {\widetilde{\xi }}}{\partial x_k} \nonumber \\&+\, 2 \overline{\xi ^{\prime \prime } \frac{\partial }{\partial x_k}\left( \rho D \frac{\partial {\widetilde{\xi }}}{\partial x_k}\right) } \end{aligned}$$
(22)

where the second term in the left-hand side (LHS) does involve the quantity \(\overline{{F}_k^{\xi ^{\prime \prime 2}}}\) which denotes the total variance flux \(\overline{{F}_k^{\xi ^{\prime \prime 2}}}=(\overline{\rho u_k \xi ^{\prime \prime 2}} - \overline{\rho D \cdot {\partial \xi ^{\prime \prime 2}}/{\partial x_k}} )\). In this transport equation, the first term on the left-hand side is the accumulation term and the second is the (conservative) flux term (convection and diffusion). On the right-hand side of (22), the first term corresponds to mean SDR, while the second is the production associated with mean concentration gradients. The last term is a molecular contribution that is often neglected just for the sake of simplicity.

A standard (i.e., simplified) form of the transport equation of the scalar dissipation rate (SDR) may be written as follows:

$$\begin{aligned} \frac{\partial \overline{\rho \varepsilon _{\xi }}}{\partial t}+ {\frac{\partial \overline{{F}_k^{\varepsilon _{\xi }}}}{\partial x_{k}}}= & {} -\underset{\mathrm {(V)}}{\underbrace{2\overline{\rho D\frac{\partial \xi ^{\prime \prime }}{\partial x_{i}}\frac{\partial u_{k}^{\prime \prime }}{\partial x_{i}}}\frac{\partial {\widetilde{\xi }}}{\partial x_{k}}}}\nonumber \\&-\,\underset{\mathrm {(VI)}}{\underbrace{2\overline{\rho D\frac{\partial \xi ^{\prime \prime }}{\partial x_{i}}\frac{\partial \xi ^{\prime \prime }}{\partial x_{k}}}\frac{\partial {\widetilde{u}}_{k}}{\partial x_{i}}}} \nonumber \\&-\,\underset{\mathrm {(VII)}}{\underbrace{2\overline{\rho D\frac{\partial \xi ^{\prime \prime }}{\partial x_{i}}\frac{\partial \xi ^{\prime \prime }}{\partial x_{k}}\frac{\partial u_{k}^{\prime \prime }}{\partial x_{i}}}}} \nonumber \\&-\,\underset{\mathrm {(VIII)}}{\underbrace{2\overline{\rho D^{2}\frac{\partial ^{2}\xi ^{\prime \prime }}{\partial x_{i}\partial x_{k}}\frac{\partial ^{2}\xi ^{\prime \prime }}{\partial x_{i}\partial x_{k}}}}} \end{aligned}$$
(23)

where \(\overline{{F}_k^{\varepsilon _{\xi }}}\) denotes the contribution of scalar dissipation fluxes. Term (V) represents the production due to the mean scalar gradient, term (VI) stands for the production due to the mean velocity gradient, term (VII) is the effect of stretching by turbulence, and term (VIII) is associated with the local curvature of the scalar field. It is noteworthy that the so-called turbulence scalar interaction (TSI) term corresponds to the sum of terms (V), (VI), and (VII). This transport equation and its modeling has been discussed in many references, see for instance references [73, 74] where the same notations are used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukharfane, R., Bouali, Z. & Mura, A. Evolution of scalar and velocity dynamics in planar shock-turbulence interaction. Shock Waves 28, 1117–1141 (2018). https://doi.org/10.1007/s00193-017-0798-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0798-5

Keywords

Navigation