Skip to main content
Log in

Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McGrath, T., St. Clair, J., Balachandar, S.: A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes. J. Appl. Phys. 119, 174903 (2016). doi:10.1063/1.4948301

    Article  Google Scholar 

  2. Baer, M., Nunziato, J.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiph. Flow 12, 861 (1986). doi:10.1016/0301-9322(86)90033-9

    Article  MATH  Google Scholar 

  3. Bdzil, J., Menikoff, R., Son, S., Kapila, A., Stewart, D.: Two-phase modeling of deflagration-to-detonation transition in granular materials: a critical examination of modeling issues. Phys. Fluids 11(2), 378 (1999). doi:10.1063/1.869887

    Article  MATH  Google Scholar 

  4. Saurel, R., Lemetayer, O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239 (2001). doi:10.1017/S0022112000003098

    Article  MATH  Google Scholar 

  5. Saurel, R., Favrie, N., Peptitpas, F., Lallemand, M.H., Gavrilyuk, S.: Modelling dynamic and irreversible powder compaction. J. Fluid Mech. 664, 348 (2010). doi:10.1017/S0022112010003794

    Article  MathSciNet  MATH  Google Scholar 

  6. Saurel, R., Le Martelot, S., Tosello, R., Lapebie, E.: Symmetric model of compressible granular mixtures with permeable interfaces. Phys. Fluids 26, 123304 (2014). doi:10.1063/1.4903259

    Article  Google Scholar 

  7. Rogue, X., Rodriguez, G., Haas, J., Saurel, R.: Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8, 29 (1998). doi:10.1007/s001930050096

    Article  MATH  Google Scholar 

  8. Sommerfeld, M.: The unsteadiness of shock waves propagating through gas-particle mixtures. Exp. Fluids. 3, 197 (1985). doi:10.1007/BF00265101

  9. Zhang, F., Frost, D., Thibault, P., Murray, S.: Explosive dispersal of solid particles. Shock Waves 10, 431 (2001). doi:10.1007/PL00004050

  10. Kapila, A., Menikoff, R., Bdzil, J., Son, S., Stewart, D.: Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations. Phys. Fluids 13(10), 3002 (2001). doi:10.1063/1.1398042

  11. Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Colella, P.: A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. (1985). doi:10.1137/0906009

  13. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Davis, S.: Simplified second-order Godunov-type methods. SIAM J Sci. Stat. Comput. (1988). doi:10.1137/0909030

  15. Leveque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  16. Wilkins, M.: Computer Simulation of Dynamic Phenomena. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  17. Forbes, J.: Shock Wave Compression of Condensed Matter: A Primer. Springer, Berlin (2012)

    Book  Google Scholar 

  18. Crowe, C., Sommerfield, M., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, New York (1998)

    Google Scholar 

  19. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)

    Google Scholar 

  20. Di Felice, R.: The voidage function for fluid-particle interaction systems. Int. J. Multiph. Flow 20, 153 (1994). doi:10.1016/0301-9322(94)90011-6

    Article  MATH  Google Scholar 

  21. Grady, D.E., Chhabildas, L.C.: Shock wave properties of soda lime glass. In: Iyer, K.R., Chou, S.C. (eds.) Proceedings of 14th US Army Symposium on Solid Mechanics. Battelle Press, Myrtle Beach (1996)

    Google Scholar 

  22. Omang, M.G., Trulsen, J.K.: Multi-phase shock simulations with smoothed particle hydrodynamics (SPH). Shock Waves 24, 521 (2014). doi:10.1007/s00193-014-0506-7

    Article  Google Scholar 

  23. Chang, E., Kailasanath, K.: Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12, 333 (2003). doi:10.1007/s00193-002-0170-1

    Article  MATH  Google Scholar 

  24. Dobratz, C.: LLNL Handbook of Explosives, UCRL-52997. Lawrence Livermore National Laboratory, Livermore (1985)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research under the In-House Laboratory and Independent Research (ILIR) Program and the Naval Undersea Research Program (NURP). The authors wish to thank the ILIR and NURP program management and review boards for their support and guidance of this research. Additionally, this work benefited from the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement to the University of Florida under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378 and from the Defense Threat Reduction Agency Basic Research Award No. HDTRA1-14-1-0028 to the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. McGrath.

Additional information

Communicated by D. Frost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGrath, T., St. Clair, J. & Balachandar, S. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes. Shock Waves 28, 533–544 (2018). https://doi.org/10.1007/s00193-017-0726-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0726-8

Keywords

Navigation