Skip to main content
Log in

Particle velocity non-uniformity and steady-wave propagation

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnson, J.N., Jones, O.E., Michaels, T.E.: Dislocation dynamics and single-crystal constitutive relations: shock-wave propagation and precursor decay. J. Appl. Phys. 41, 2230–2239 (1970)

    Google Scholar 

  2. Ashby, M.F.: The deformation of plastically non-homogeneous materials. Phil. Mag. 21, 399–424 (1970)

    Article  Google Scholar 

  3. Johnson, J.N., Barker, L.M.: Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. J. Appl. Phys. 40, 4321–4335 (1969)

    Article  Google Scholar 

  4. Prieto, F.E., Renero, C.: Steady shock profile in solids. J. Appl. Phys. 44, 4013–4019 (1973)

    Article  Google Scholar 

  5. Chhabildas, L.C., Asay, J.R.: Rise-time measurements of shock transitions in aluminum, copper, and steel. J. Appl. Phys. 50, 2749–2756 (1979)

    Article  Google Scholar 

  6. Grady, D.E., Kipp, M.E.: The growth of unstable thermoplastic shear with application to steady-wave shock compression of solids. J. Mech. Phys. Solids 35, 95–119 (1987)

    Article  MATH  Google Scholar 

  7. Swegle, J.W., Grady, D.E.: Shock viscosity and the prediction of shock wave rise-times. J. Appl. Phys. 58, 692–701 (1985)

    Article  Google Scholar 

  8. Asay, J.R., Barker, L.M.: Interferometric measurements of shock-induced internal particle velocity and spatial variations of particle velocity. J. Appl. Phys. 45, 2540–2546 (1974)

    Article  Google Scholar 

  9. Lipkin, J., Asay, J.R.: Reshock and release of shock-compressed 6061–T6 aluminum. J. Appl. Phys. 48, 182–189 (1977)

    Article  Google Scholar 

  10. Meshcheryakov, Yu.I., Divakov, A.K., Zhigacheva, N.I., Makarevich, I.P., Barakhtin, B.K.: Dynamic structures in shock-loaded copper. Phys. Rev. B. 78, 064301–064316 (2008)

  11. Meshcheryakov, Yu.I., Divakov, A.K., Zhigacheva, N.I., Barakhtin, B.K.: Regimes of interscale momentum exchange in shock deformed solids. Int. J. Impact Eng. 57, 99–107 (2013)

  12. Taylor, J.W.: Dislocation dynamics and dynamic yielding. J. Appl. Phys. 36, 3146–3155 (1965)

    Article  Google Scholar 

  13. Johnston, W.G., Gilman, J.J.: Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J. Appl. Phys. 30, 129–144 (1959)

    Article  Google Scholar 

  14. Ferguson, W.G., Kumar, A., Dorn, J.E.: Dislocation damping in aluminum at high strain rates. J. Appl. Phys. 38, 1863–1869 (1967)

    Article  Google Scholar 

  15. Bland, D.R.: On shock structure in a solid. J. Inst. Math. Appl. 1, 56–75 (1965)

    Article  MathSciNet  Google Scholar 

  16. Arvidsson, N.E., Gupta, Y.M., Duvall, G.E.: Precursor decay in 1060 aluminum. J. Appl. Phys. 46, 447–457 (1975)

  17. Yano, K., Horie, Y.: Discrete-element modeling of shock compression of polycrystalline copper. Phys. Rev. B. 59, 13672–13680 (1999)

    Article  Google Scholar 

  18. Case, S., Horie, Y.: Discrete element simulation of shock wave propagation in polycrystalline copper. J. Mech. Phys. Solids 55, 589–614 (2007)

    Article  MATH  Google Scholar 

  19. Hinze, J.O.: Turbulence. McGraw-Hill, New York (1959)

    Google Scholar 

Download references

Acknowledgments

The author thanks A.K. Divakov and Yu. A. Petrov for the velocity profiles used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Meshcheryakov.

Additional information

Communicated by A. Higgins and E. Timofeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshcheryakov, Y.I. Particle velocity non-uniformity and steady-wave propagation. Shock Waves 27, 291–297 (2017). https://doi.org/10.1007/s00193-016-0659-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0659-7

Keywords

Navigation