Skip to main content
Log in

Modelling gas dynamics in 1D ducts with abrupt area change

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow–area change interaction is determined by a specific estimate of the surface pressure integral. Model’s predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, G.: Experimental investigations of shock waves undergoing sudden expension in a confined chamber. PhD Dissertation, University of Florida, Gainesville (1999)

  2. Abate G., Shyy W.: Dynamic structure of confined shocks undergoing sudden expension. Prog. Aerosp. Sci. 38, 23–42 (2002)

    Article  Google Scholar 

  3. Andrianov N., Warnecke G.: On the solution to the Riemann problem for the compressible duct flow. SIAM J. Appl. Math. 64(3), 878–901 (2004)

    Article  MathSciNet  Google Scholar 

  4. Chisnell R.F.: The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2, 286–298 (1957)

    Article  MathSciNet  Google Scholar 

  5. Dal Maso G., Le Floch P.G., Murat F.: Definition and weak stability of nonconservative products. J. Pure Appl. Math. 74, 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Emanuel G., Satyanand U.S., Lu F.K.: Performance of a shock tube with a large-area contraction. AIAA J. 43, 1995–1999 (2005)

    Article  Google Scholar 

  7. Falcovitz J., Igra O.: Model for shock interaction with sharp area reduction. Proc. IMechE Part G J. Aerosp. Eng. 222, 789–800 (2008)

    Article  Google Scholar 

  8. Godunov, S.K., Zabrodine, A., Ivanov, M., Kraiko, A., Prokopov, G.: Resolution numerique des problemes multidimensionnels de la dynamique des gaz (in French), Editions Mir (1979)

  9. Gottlieb J.J., Igra O.: Interaction of rarefaction waves with area reductions in ducts. J. Fluid Mech. 137, 285–305 (1983)

    Article  Google Scholar 

  10. Igra O., Falcovitz J.: Numerical solution to rarefaction or shock wave/duct area change interaction. AIAA J. 24, 1390–1394 (1986)

    Article  Google Scholar 

  11. Igra O., Falcovitz J., Reichenbach H., Heilig W.: Experimental and numerical study of the interaction process between a planar shock wave and a square cavity. J. Fluid Mech. 313, 105–130 (1996)

    Article  Google Scholar 

  12. Igra O., Gottlieb J.J.: Interaction of rarefaction waves with area enlargements in ducts. AIAA J. 23, 1014–1020 (1985)

    Article  Google Scholar 

  13. Igra O., Wu X., Falcovitz J., Meguro T., Takamaya K., Heilig W.: Experimental and theorical studies of shock wave propagation through double-bend ducts. J. Fluid Mech. 437, 255–282 (2001)

    Article  Google Scholar 

  14. Jiang J., Takayama K., Babinsky H., Meguro T.: Transient shock wave flows in tubes with sudden change in cross section. Shock Waves 7, 151–162 (1997)

    Article  Google Scholar 

  15. Jourdan G., Houas L., Schwaederle L., Layes G., Carrey R., Diaz F.: A new variable inclination shock tube for multiple investigations. Shock Waves 13, 501–504 (2004)

    Article  Google Scholar 

  16. Kroner D., Thanh M.D.: Numerical solutions to compressible flows in a nozzle with variable cross-section. SIAM J. Num. Anal. 43(2), 796–824 (2006)

    Article  MathSciNet  Google Scholar 

  17. Le Floch P.G., Thanh M.D.: The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Commun. Math. Sci. 1, 763–796 (2003)

    Article  MathSciNet  Google Scholar 

  18. Le Floch P.G., Tzavaras A.E.: Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30(6), 1309–1342 (1999)

    Article  MathSciNet  Google Scholar 

  19. Louis, X.: Numerical simulation of compressible turbulent modelling. PhD Thesis, Univ. Paris 6 (1995)

  20. Rudinger G.: Passage of shock waves through ducts of variable cross section. Phys. Fluids 3, 449–455 (1960)

    Article  Google Scholar 

  21. Salas, M.D.: Shock wave interaction with abrupt area change. Technical Report No. 3113, NASA (1991)

  22. Saurel R., Chinnaya A., Renaud F.: Thermodynamic analysis and numerical resolution of a turbulent—fully ionized plasma flow model. Shock Waves 13(4), 283–297 (2003)

    Article  Google Scholar 

  23. Saurel R., Gavrilyuk S., Renaud F.: A multiphase model with internal degrees of freedom: application to shock-bublle interaction. J. Fluid Mech. 495, 283–321 (2003)

    Article  MathSciNet  Google Scholar 

  24. Sloan S.A., Nettleton M.A.: A model for the axial decay of a shock in a large abrupt area change. J. Fluid Mech. 71, 769–784 (1975)

    Article  Google Scholar 

  25. Toro E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997)

    Book  Google Scholar 

  26. Van Leer B.: Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov’s Methods. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  27. Woodward P., Colella P.: The numerical simulations of two-dimensional fluid with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Menina.

Additional information

Communicated by O. Igra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menina, R., Saurel, R., Zereg, M. et al. Modelling gas dynamics in 1D ducts with abrupt area change. Shock Waves 21, 451–466 (2011). https://doi.org/10.1007/s00193-011-0321-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-011-0321-3

Keywords

Navigation