Skip to main content
Log in

Investigation of detonation initiation in aluminium suspensions

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich (r = 1.61) aluminium–air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium–air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veyssiere, B.: Detonations in gas–particle mixtures. AIAA J. Propul. Power 22(6), 1269–1288 (2006)

    Article  Google Scholar 

  2. Khasainov, B.A., Veyssiere, B.: Initiation of detonation regimes in hybrid two-phase mixtures. Shock Waves 6, 9–15 (1996)

    Article  Google Scholar 

  3. Strauss, W.A.: Investigation of the detonation of aluminum powder–oxygen mixture. AIAA J. 6(9), 1753–1756 (1968)

    Article  Google Scholar 

  4. Lee, J.H.S.: Dynamic parameters of gaseous detonations. Annu. Rev. Fluid Mech. 16, 311–336 (1984)

    Article  Google Scholar 

  5. Benedick, W.B., Guirao, C.M., Knystautas, R., Lee, J.H.S.: Critical charge for the direct initiation of detonation in gaseous fuel–air mixtures. In: Bowen, J.R., Leyer, J.-C., Soloukhin, R.I.(eds) AIAA Progress in Astronautics and Aeronautics, vol. 106., pp. 181–202. AIAA, New York (1986)

    Google Scholar 

  6. Desbordes, D.: Correlation between shock flame predetonation zone size and cell spacing in critically initiated spherical detonations. AIAA Progress in Astronautics and Aeronautics, vol. 106, pp. 166--180, AIAA, New York (1986)

  7. Ingignoli, W., Veyssiere, B., Khasainov, B.A.: Shock initiation of detonations in aluminium – oxygen mixtures. In: Roy, G.D., Frolov, S.M., Sinibaldi, J.(eds) Pulsed and Continuous Detonations, ISBN 5-94588-040-X, pp. 218–224. Torus Press, Moscow (2006)

    Google Scholar 

  8. Vasiliev, A.A., Grigoriev, V.V.: Critical conditions for gas detonations in sharply expanding channels. Fizika Gorenyia i Vzryva 16, 117–125 (1980)

    Google Scholar 

  9. Ingignoli, W., Veyssiere, B., Khasainov, B.A.: Study of detonation initiation in unconfined aluminium dust clouds. In: Roy, G.D., Frolov, S.M., Kailasanath, K., Smirnov, N.N.(eds) Gaseous and Heterogeneous Detonations, ISBN 5-89055-016-0, pp. 337–350. ENAS Publishers, Moscow (1999)

    Google Scholar 

  10. Zhang, F., Grönig, H., Van De Ven, A.: DDT and detonation waves in dust–air mixtures. Shock Waves 11, 53–71 (2001)

    Article  Google Scholar 

  11. Tulis, A.J.: On the unconfined detonation of aluminium powder – air clouds. In: 1stInternational Colloquium on Explosibility of Industrial Dusts, Baranow, Poland, pp. 178–186 (1984)

  12. Matsui, H.: On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. In: 17th Symposium (International) on Combustion, Leeds University, Leeds, 20–25 August 1978, pp. 1269–1280 (1979)

  13. Makeev, V.I., Gostintsev, Yu.A., Strogonov, V.V., Bokhon, Yu.A., Chernushkin, Yu.N., Kulikov, V.N.: Combustion and detonation of hydrogen-air mixtures in free spaces. Combus. Explos. Shock Waves 19(5), 548–550 (1983)

    Article  Google Scholar 

  14. Nigmatulin, R.I.: Prikl. Matemat. Mekh. 34, 1097–1112 (1970)

    Google Scholar 

  15. Merzhanov, A.G., Grigorijev, Yu.M., Gal’Chenko, Yu.A.: Aluminium ignition. Combus. Flame 29, 1–14 (1977)

    Article  Google Scholar 

  16. Ingignoli, W.: Etude de la formation et de la propagation des détonations dans des suspensions de particules d’aluminium en atmosphère oxydante ou réactive. Thèse de Doctorat, ENSMA, University of Poitiers, France (1999)

  17. Price, E.W.: Combustion of metallized propellants. In: Kuo, K.K., Summerfield, M.M.(eds) Fundamentals of Solid Propellant Combustion. Progress in Astronautics and Aeronautics, vol. 90, pp. 479–513. AIAA, New York (1984)

    Google Scholar 

  18. Benkiewicz, K., Hayashi, A.K.: Two-dimensional numerical simulations of multi-headed detonations in oxygen aluminium mixtures using an adaptative mesh refinement. Shock Waves 13, 385–402 (2003)

    Article  Google Scholar 

  19. Khmel, T.A., Fedorov, A.V.: Numerical investigation of detonation cell size dependence on flow scales in aluminum particle–oxygen suspensions. In: Roy, G.D., Berlin, A.A., Frolov, S.M., Shepherd, J.E., Tsyganov, S.A. (eds.) International Colloquium on Application of Detonations to Propulsion, St Petersburg, Russia, Torus Press, Moscow (2004)

  20. Zhang, F., Murray, S.B., Gerrard, K.B.: Aluminium particles-air detonation at elevated pressures. Shock Waves 15, 313–324 (2006)

    Article  Google Scholar 

  21. Zhang, F., Gerrard, K.B., Ripley, R.C., Tanguay, V.: Unconfined aluminum particles-air detonation. In: Proceedings of the 26th International Symposium on Shock Waves. July 2007, Goettingen, Germany, 15–20 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Veyssiere.

Additional information

Communicated by L. Bauwens.

This paper is based on work that was presented at the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veyssiere, B., Khasainov, B.A. & Briand, A. Investigation of detonation initiation in aluminium suspensions. Shock Waves 18, 307–315 (2008). https://doi.org/10.1007/s00193-008-0136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0136-z

Mathematics Subject Classification (2000)

Navigation