Skip to main content

Advertisement

Log in

The potential role of folate metabolism in interstitial cystitis

  • Review Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

The topic of interstitial cystitis (IC), also known as painful bladder syndrome (PBS), and folate/one carbon metabolism has previously been unaddressed in research. This narrative review highlights a potential connection for those with mast cell-related IC and histamine-mediated pain that is explored through four conceptual sections. The first section focuses on the nature of mast cell involvement and histamine-mediated pain in some interstitial cystitis patients. The second section reviews the literature on folate status in wider allergic conditions. The third section addresses the role of folate and methylation in general in histamine excretion. Finally, folate metabolism and vascular function are addressed because of the vascular abnormalities present in some IC bladders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Logadottir Y, Fall M, Kåbjörn-Gustafsson C, Peeker R. Clinical characteristics differ considerably between phenotypes of bladder pain syndrome/interstitial cystitis. Scand J Urol Nephrol. 2012;46(5):365–70. https://doi.org/10.3109/00365599.2012.689008.

    Article  PubMed  Google Scholar 

  2. FitzGerald MP, Payne CK, Lukacz ES, et al. Randomized multicenter clinical trial of myofascial physical therapy in women with interstitial cystitis/painful bladder syndrome and pelvic floor tenderness. J Urol. 2012;187(6):2113–8. https://doi.org/10.1016/j.juro.2012.01.123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cervigni M. Interstitial cystitis/bladder pain syndrome and glycosaminoglycans replacement therapy. Translat Androl Urol. 2015;4(6):638–42. https://doi.org/10.3978/j.issn.2223-4683.2015.11.04.

    Article  Google Scholar 

  4. Rudick CN, Bryce PJ, Guichelaar LA, Berry RE, Klumpp DJ. Mast cell-derived histamine mediates cystitis pain. PLoS One. 2008;3(5):e2096. https://doi.org/10.1371/journal.pone.0002096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen HM, Lin CC, Kang CS, Lee CT, Lin HC, Chung SD. Bladder pain syndrome/interstitial cystitis increase the risk of coronary heart disease. Neurourol Urodyn. 2014;33(5):511–5. https://doi.org/10.1002/nau.22444.

    Article  PubMed  Google Scholar 

  6. Chung SD, Xirasagar S, Lin CC, Ling W, Li HC, Lin HC. Increased risk of ischemic stroke among women with bladder pain syndrome/interstitial cystitis: a cohort study from Taiwan. Neurourol Urodyn. 2015;34(1):44–9. https://doi.org/10.1002/nau.22515.

    Article  PubMed  Google Scholar 

  7. Alagiri M, Chottiner S, Ratner V, Slade D, Hanno PM. Interstitial cystitis: unexplained associations with other chronic disease and pain syndromes. Urology. 1997;49 ((5):52–7. https://doi.org/10.1016/S0090-4295(99)80332-X.

    Article  Google Scholar 

  8. Dinis S, de Oliveira JT, Pinto R, Cruz F, Buffington CAT, Dinis P. From bladder to systemic syndrome: concept and treatment evolution of interstitial cystitis. Int J Women’s Health. 2015;7:735–44. https://doi.org/10.2147/IJWH.S60798.

    Article  Google Scholar 

  9. Lee J, Doggweiler-Wiygul R, Kim S, Hill BD, Yoo TJ. Is interstitial cystitis an allergic disorder?: a case of interstitial cystitis treated successfully with anti-IgE. Int J Urol. 2006;13(5):631–4. https://doi.org/10.1111/j.1442-2042.2006.01373.x.

    Article  PubMed  Google Scholar 

  10. Jhang JF, Hsu YH, Jiang YH, Kuo HC. The role of immunoglobulin E in the pathogenesis of ketamine related cystitis and ulcerative interstitial cystitis: an immunohistochemical study. Pain Phys. 2016;19(4):E581–7.

    Google Scholar 

  11. Boucher W, El-Mansoury M, Pang X, Sant GR, Theoharides TC. Elevated mast cell tryptase in the urine of patients with interstitial cystitis. Br J Urol. 1995;76(1):94–100. https://doi.org/10.1111/j.1464-410X.1995.tb07840.x.

    Article  PubMed  CAS  Google Scholar 

  12. Letourneau R, Pang X, Sant GR, Theoharides TC. Intragranular activation of bladder mast cells and their association with nerve processes in interstitial cystitis. Br J Urol. 1996;77(1):41–54. https://doi.org/10.1046/j.1464-410X.1996.08178.x.

    Article  PubMed  CAS  Google Scholar 

  13. Bicer F, Altuntas CZ, Izgi K, et al. Chronic pelvic allodynia is mediated by CCL2 through mast cells in an experimental autoimmune cystitis model. Am J Physiol Renal Physiol. 2015;308(2):F103–13. https://doi.org/10.1152/ajprenal.00202.2014.

    Article  PubMed  CAS  Google Scholar 

  14. Spanos C, Pang X, Ligris K, et al. Stress-induced bladder mast cell activation: implications for interstitial cystitis. J Urol. 1997;157(2):669–72. https://doi.org/10.1016/S0022-5347(01)65247-9.

    Article  PubMed  CAS  Google Scholar 

  15. Theoharides TC, Sant GR, El-Mansoury M, Letourneau R, Ucci AA Jr, Meares EM Jr. Activation of bladder mast cells in interstitial cystitis: a light and electron microscopic study. J Urol. 1995;153(3):629–36. https://doi.org/10.1016/S0022-5347(01)67669-9.

    Article  PubMed  CAS  Google Scholar 

  16. Theoharides TC, Kempuraj D, Sant GR. Mast cell involvement in interstitial cystitis: a review of human and experimental evidence. Urology. 2001;57(6, Suppl 1):47–55. https://doi.org/10.1016/S0090-4295(01)01129-3.

    Article  PubMed  CAS  Google Scholar 

  17. Yamada T, Murayama T, Mita H, Akiyama K. Subtypes of bladder mast cells in interstitial cystitis. Int J Urol. 2001;7(8):292–7. https://doi.org/10.1046/j.1442-2042.2000.00197.x.

    Article  Google Scholar 

  18. Sant GR, Kempuraj D, Marchand JE, Theoharides TC. The mast cell in interstitial cystitis: role in pathophysiology and pathogenesis. Urology. 2007;69(4 Suppl):34–40. doi:https://doi.org/10.1016/j.urology.2006.08.1109.

    Article  PubMed  Google Scholar 

  19. Martin Jensen M, Jia W, Schults AJ, Ye X, Prestwich GD, Oottamasathien S. IL-33 mast cell axis is central in LL-37 induced bladder inflammation and pain in a murine interstitial cystitis model. Cytokine. 2018;110:420–27. https://doi.org/10.1016/j.cyto.2018.05.012.

    Article  PubMed  CAS  Google Scholar 

  20. Malik ST, Birch BR, Voegeli D, et al. Distribution of mast cell subtypes in interstitial cystitis: implications for novel diagnostic and therapeutic strategies? J Clin Pathol. 2018;71(9):840–44.

    Article  PubMed  Google Scholar 

  21. Regauer S. Mast cell activation syndrome in pain syndromes bladder pain syndrome/interstitial cystitis and vulvodynia. Translat Androl Urol. 2016;5(3):396–7. https://doi.org/10.21037/tau.2016.03.12.

    Article  Google Scholar 

  22. Molderings GJ, Brettner S, Homann J, Afrin LB. Mast cell activation disease: a concise practical guide for diagnostic workup and therapeutic options. J Hematol Oncol. 2011;4(1):10. https://doi.org/10.1186/1756-8722-4-10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ratner V. Mast cell activation syndrome. Translat Androl Urol. 2015;4(5):587–8. https://doi.org/10.3978/j.issn.2223-4683.2015.09.03.

    Article  Google Scholar 

  24. Castells M. Mast cell mediators in allergic inflammation and mastocytosis. Immunol Allergy Clin N Am. 2006;26(3):465–85. doi:https://doi.org/10.1016/j.iac.2006.05.005.

    Article  Google Scholar 

  25. Husemoen LL, Toft U, Fenger M, Jorgensen T, Johansen N, Linneberg A. The association between atopy and factors influencing folate metabolism: is low folate status causally related to the development of atopy? Int J Epidemiol. 2006;35(4):954–61. https://doi.org/10.1093/ije/dyl094.

    Article  PubMed  Google Scholar 

  26. Haberg SE, London SJ, Stigum H, Nafstad P, Nystad W. Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child. 2009;94(3):180–4. https://doi.org/10.1136/adc.2008.142448.

    Article  PubMed  CAS  Google Scholar 

  27. Whitrow MJ, Moore VM, Rumbold AR, Davies MJ. Effect of supplemental folic acid in pregnancy on childhood asthma: a prospective birth cohort study. Am J Epidemiol. 2009;170(12):1486–93. https://doi.org/10.1093/aje/kwp315.

    Article  PubMed  Google Scholar 

  28. Tsang BL, Devine OJ, Cordero AM, et al. Assessing the association between the methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism and blood folate concentrations: a systematic review and meta-analysis of trials and observational studies. Am J Clin Nutr. 2015;101(6):1286–94. https://doi.org/10.3945/ajcn.114.099994.

    Article  PubMed  CAS  Google Scholar 

  29. Sharp L, Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol. 2004;159(5):423–43. https://doi.org/10.1093/aje/kwh066.

    Article  PubMed  Google Scholar 

  30. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185–96. https://doi.org/10.1093/ajcn/85.5.1185.

    Article  PubMed  CAS  Google Scholar 

  31. Crider KS, Cordero AM, Qi YP, Mulinare J, Dowling NF, Berry RJ. Prenatal folic acid and risk of asthma in children: a systematic review and meta-analysis. Am J Clin Nutr. 2013;98(5):1272–81. https://doi.org/10.3945/ajcn.113.065623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Brown SB, Reeves KW, Bertone-Johnson ER. Maternal folate exposure in pregnancy and childhood asthma and allergy: a systematic review. Nutr Rev. 2014;72(1):55–64.

    Article  PubMed  Google Scholar 

  33. Wang T, Zhang H-P, Zhang X, Liang Z-A, Ji Y-L, Wang G. Is folate status a risk factor for asthma or other allergic diseases? Allergy Asthma Immunol Res. 2015;7(6):538–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Magdelijns FJH, Mommers M, Penders J, Smits L, Thijs C. Folic acid use in pregnancy and the development of atopy, asthma, and lung function in childhood. Pediatrics. 2011;128(1):e135–44. https://doi.org/10.1542/peds.2010-1690.

    Article  PubMed  Google Scholar 

  35. McGowan EC, Hong X, Selhub J, et al. The association between folate/folic acid metabolites and the development of food allergy (FA) in children. J Allergy Clin Immunol. 2018;141(2, Supplement):AB86. https://doi.org/10.1016/j.jaci.2017.12.277.

    Article  Google Scholar 

  36. Yang L, Jiang L, Bi M, et al. High dose of maternal folic acid supplementation is associated to infant asthma. Food Chem Toxicol. 2015;75:88–93. https://doi.org/10.1016/j.fct.2014.11.006.

    Article  PubMed  CAS  Google Scholar 

  37. Zetstra-van der Woude PA, De Walle HEK, Hoek A, et al. Maternal high-dose folic acid during pregnancy and asthma medication in the offspring. Pharmacoepidemiol Drug Saf. 2014;23(10):1059–65. https://doi.org/10.1002/pds.3652.

    Article  PubMed  CAS  Google Scholar 

  38. Blatter J, Han YY, Forno E, Brehm J, Bodnar L, Celedon JC. Folate and asthma. Am J Respir Crit Care Med. 2013;188(1):12–7. https://doi.org/10.1164/rccm.201302-0317PP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Blatter J, Brehm JM, Sordillo J, et al. Folate deficiency, atopy, and severe asthma exacerbations in Puerto Rican children. Ann Am Thor Soc. 2016;13(2):223–30. https://doi.org/10.1513/AnnalsATS.201508-549OC.

    Article  Google Scholar 

  40. Montrose L, Ward TJ, Semmens EO, Cho YH, Brown B, Noonan CW. Dietary intake is associated with respiratory health outcomes and DNA methylation in children with asthma. Allergy Asthma Clin Immunol. 2017;13:12. https://doi.org/10.1186/s13223-017-0187-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Thuesen BH, Husemoen LLN, Ovesen L, et al. Atopy, asthma, and lung function in relation to folate and vitamin B12 in adults. Allergy. 2010;65(11):1446–54. https://doi.org/10.1111/j.1398-9995.2010.02378.x.

    Article  PubMed  CAS  Google Scholar 

  42. Matsui EC, Matsui W. Higher serum folate levels are associated with a lower risk of atopy and wheeze. J Allergy Clin Immunol. 2009;123(6):1253–1259.e1252. https://doi.org/10.1016/j.jaci.2009.03.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Farres MN, Shahin RY, Melek NA, El-Kabarity RH, Arafa NA. Study of folate status among Egyptian asthmatics. Intern Med. 2011;50(3):205–11. https://doi.org/10.2169/internalmedicine.50.4424.

    Article  PubMed  CAS  Google Scholar 

  44. Gustafsson A, Forshell G. Studies on the enzymic methylation of histamine. Acta Chem Scand. 1964;18:2069–76.

    Article  CAS  Google Scholar 

  45. Schayer RW, Karjala S. Ring N methylation; a major route of histamine metabolism. J Biol Chem. 1956;221(1):307–14.

    PubMed  CAS  Google Scholar 

  46. Granerus G. Urinary excretion of histamine, methylhistamine and methylimidazoleacetic acids in man under standardized dietary conditions. Scand J Clin Lab Invest. 1968;104:59–68.

    Article  CAS  Google Scholar 

  47. Selhub J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging. 2002;6(1):39–42.

    PubMed  CAS  Google Scholar 

  48. Brown DD, Tomchick R, Axelrod J. The distribution and properties of a histamine-methylating enzyme. J Biol Chem. 1959;234:2948–50.

    PubMed  CAS  Google Scholar 

  49. Duch DS, Edelstein MP, Nichol CA. Inhibition of histamine-metabolizing enzymes and elevation of histamine levels in tissues by lipid-soluble anticancer folate antagonists. Mol Pharmacol. 1980;18(1):100.

    PubMed  CAS  Google Scholar 

  50. Ishizaka T, Hirata F, Ishizaka K, Axelrod J. Stimulation of phospholipid methylation, Ca2+ influx, and histamine release by bridging of IgE receptors on rat mast cells. Proc Natl Acad Sci. 1980;77(4):1903–6.

    Article  PubMed  CAS  Google Scholar 

  51. Hirata F, Axelrod J, Crews FT. Concanavalin a stimulates phospholipid methylation and phosphatidylserine decarboxylation in rat mast cells. Proc Natl Acad Sci U S A. 1979;76(10):4813–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sharma S, Litonjua A. Asthma, allergy, and responses to methyl donor supplements and nutrients. J Allergy Clin Immunol. 2014;133(5):1246–54. https://doi.org/10.1016/j.jaci.2013.10.039.

    Article  PubMed  CAS  Google Scholar 

  53. Manzotti G, Breda D, Di Gioacchino M, Burastero SE. Serum diamine oxidase activity in patients with histamine intolerance. Int J Immunopathol Pharmacol. 2016;29(1):105–11. https://doi.org/10.1177/0394632015617170.

    Article  PubMed  CAS  Google Scholar 

  54. Wagner N, Dirk D, Peveling-Oberhag A, et al. A popular myth—low-histamine diet improves chronic spontaneous urticaria—fact or fiction? J Eur Acad Dermatol Venereol. 2017;31(4):650–5. https://doi.org/10.1111/jdv.13966.

    Article  PubMed  CAS  Google Scholar 

  55. Saban R. Angiogenic factors, bladder neuroplasticity and interstitial cystitis—new pathobiological insights. Transl Androl Urol. 2015;4(5):555–62. https://doi.org/10.3978/j.issn.2223-4683.2015.08.05.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Peng CH, Jhang JF, Shie JH, Kuo HC. Down regulation of vascular endothelial growth factor is associated with decreased inflammation after intravesical OnabotulinumtoxinA injections combined with hydrodistention for patients with interstitial cystitis—clinical results and immunohistochemistry analysis. Urology. 2013;82(6):1452.e1451–6. https://doi.org/10.1016/j.urology.2013.09.003.

    Article  Google Scholar 

  57. Rosamilia A, Cann L, Dwyer P, Scurry J, Rogers P. Bladder microvasculature in women with interstitial cystitis. J Urol. 1999;161(6):1865–70.

    Article  PubMed  CAS  Google Scholar 

  58. Yamada T, Nishimura M, Mita H. Increased number of apoptotic endothelial cells in bladder of interstitial cystitis patients. World J Urol. 2007;25(4):407–13. https://doi.org/10.1007/s00345-007-0174-7.

    Article  PubMed  Google Scholar 

  59. Roybal CN, Yang S, Sun CW, et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem. 2004;279(15):14844–52. https://doi.org/10.1074/jbc.M312948200.

    Article  PubMed  CAS  Google Scholar 

  60. Maeda M, Yamamoto I, Fujio Y, Azuma J. Homocysteine induces vascular endothelial growth factor expression in differentiated THP-1 macrophages. Biochim Biophys Acta Gen Subj. 2003;1623(1):41–6. https://doi.org/10.1016/S0304-4165(03)00161-2.

    Article  CAS  Google Scholar 

  61. Herrmann M, Taban-Shomal O, Hübner U, Böhm M, Herrmann W. A review of homocysteine and heart failure. Eur J Heart Fail. 2006;8(6):571–6. https://doi.org/10.1016/j.ejheart.2005.11.016.

    Article  PubMed  CAS  Google Scholar 

  62. Singh AP, Singh M, Balakumar P. Effect of mast cell stabilizers in hyperhomocysteinemia-induced cardiac hypertrophy in rats. J Cardiovasc Pharmacol. 2008;51(6):596–604. https://doi.org/10.1097/FJC.0b013e31817ae60f.

    Article  PubMed  CAS  Google Scholar 

  63. Joseph J, Kennedy RH, Devi S, Wang J, Joseph L, Hauer-Jensen M. Protective role of mast cells in homocysteine-induced cardiac remodeling. Am J Physiol Heart Circ Physiol. 2005;288(5):H2541–5. https://doi.org/10.1152/ajpheart.00806.2004.

    Article  PubMed  CAS  Google Scholar 

  64. Spence JD. Homocysteine lowering for stroke prevention: unravelling the complexity of the evidence. Int J Stroke. 2016;11(7):744–7. https://doi.org/10.1177/1747493016662038.

    Article  PubMed  Google Scholar 

  65. Clejan S, Japa S, Clemetson C, Hasabnis SS, David O, Talano JV. Blood histamine is associated with coronary artery disease, cardiac events and severity of inflammation and atherosclerosis. J Cell Mol Med. 2002;6(4):583–92.

    Article  PubMed  CAS  Google Scholar 

  66. Zdravkovic V, Pantovic S, Rosic G, et al. Histamine blood concentration in ischemic heart disease patients. J Biomed Biotechnol. 2011;2011:8. https://doi.org/10.1155/2011/315709.

    Article  CAS  Google Scholar 

  67. Frye R, Sequeira J, Quadros E, James S, Rossignol D. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol Psychiatry. 2013;18(3):369.

    Article  PubMed  CAS  Google Scholar 

  68. Ramaekers VT, Rothenberg SP, Sequeira JM, et al. Autoantibodies to folate receptors in the cerebral folate deficiency syndrome. N Engl J Med. 2005;352(19):1985–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn D. Keagy.

Ethics declarations

Conflicts of interest

This work is unfunded, and entirely authored by C. Keagy, with no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keagy, C.D. The potential role of folate metabolism in interstitial cystitis. Int Urogynecol J 30, 363–370 (2019). https://doi.org/10.1007/s00192-018-3771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-018-3771-7

Keywords

Navigation