Skip to main content

Advertisement

Log in

Non-linear motions of Australian geodetic stations induced by non-tidal ocean loading and the passage of tropical cyclones

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We investigate daily and sub-daily non-tidal oceanic and atmospheric loading (NTOAL) in the Australian region and put an upper bound on potential site motion examining the effects of tropical cyclone Yasi that crossed the Australian coast in January/February 2011. The dynamic nature of the ocean is important, particularly for northern Australia where the long-term scatter due to daily and sub-daily oceanic changes increases by 20–55 % compared to that estimated using the inverted barometer (IB) assumption. Correcting the daily Global Positioning System (GPS) time series for NTOAL employing either a dynamic ocean model or the IB assumption leads to a reduction of up to 52 % in the weighted scatter of daily coordinate estimates. Differences between the approaches are obscured by seasonal variations in the GPS precision along the northern coast. Two compensating signals during the cyclone require modelling at high spatial and temporal resolution: uplift induced by the atmospheric depression, and subsidence induced by storm surge. The latter dominates (\(>\)135 %) the combined net effect that reaches a maximum of 14 mm, and 10 mm near the closest GPS site TOW2. Here, 96 % of the displacement is reached within 15 h due to the rapid transit of cyclones and the quasi-linear nature of the coastline. Consequently, estimating sub-daily NTOAL is necessary to properly account for such a signal that can be 3.5 times larger than its daily-averaged value. We were unable to detect the deformation signal in 2-hourly GPS processing and show that seasonal noise in the Austral summer dominates and precludes GPS detection of the cyclone-related subsidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Boy JP, Hinderer J, Gegout P (1998) Global atmospheric loading and gravity. Phys Earth Planet Int 109:161–177

    Article  Google Scholar 

  • Boy JP, Lyard F (2008) High-frequency non-tidal ocean loading effects on surface gravity measurements. Geophys J Int 175:35–45. doi:10.1111/j.1365-246X.2008.03894.x

    Article  Google Scholar 

  • Boy JP, Longuevergne L, Boudin F, Jacob T, Lyard F, Llubes M, Florsch N (2009) Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements. J Geodyn 48:182–188. doi:10.1016/j.jog.2009.09.022

    Article  Google Scholar 

  • Bruinsma S, Lemoine JM, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45:587–601

    Article  Google Scholar 

  • Carrère C, Lyard F (2003) Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing: comparisons with observations. Geophys Res Lett 30(6):1275. doi:10.1029/2002GL016473

    Article  Google Scholar 

  • Coleman R, Dickey JM, Featherstone W, Higgins M, Johnston G, Lambeck K, Lovell JEJ, McQueen H, Rizos C, Tingay S, Tregoning P, Twilley C, Watson CS (2008) New geodetic infrastructure for Australia. J Spat Sci 53(2):65–80

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Royal Meteo Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys 10:761–797

    Article  Google Scholar 

  • Fratepietro F, Baker TF, Williams SDP, Van Camp M (2006) Ocean loading deformations caused by storm surges on the northwest European shelf. Geophys Res Lett 33(6). doi:10.1029/2005GL025475

  • Geng J, Williams SDP, Teferle FN, Dodson AH (2012) Detecting storm surge loading deformations around the southern North Sea using subdaily GPS. Geophys J Int 191(2):569–578. doi:10.1111/j.1365-246X.2012.05656.x

  • Haigh ID, Wijeratne EMS, MacPherson LR, Pattiaratchi CB, Mason MS, Crompton RP, George S (2014a) Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level. Clim Dyn 42:139–147. doi:10.1007/s00382-012-1652-1

    Article  Google Scholar 

  • Haigh ID, MacPherson LR, Wijeratne EMS, Mason MS, Pattiaratchi CB, Crompton RP, George S (2014b) Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges. Clim Dyn 42:121–138. doi:10.1007/s00382-012-1653-0

    Article  Google Scholar 

  • Herring TA, King RW, McClusky SC (2010) Introduction to GAMIT-GLOBK. Massachusetts Institute of Technology, Cambridge pp 48

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470

    Article  Google Scholar 

  • Lemoine JM, Bruinsma S, Loyer S, Biancale R, Marty JC, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39:1620–1629. doi:10.1016/j.asr.2007.03.062

    Article  Google Scholar 

  • Mémin A, Rogister Y, Hinderer J, Llubes M, Berthier E, Boy JP (2009) Ground deformation and gravity variations modelled from present-day ice thinning in the vicinity of glaciers. J Geodyn 48(3–5):195–203. doi:10.1016/j.jog.2009.09.006

    Article  Google Scholar 

  • Merriam JB (1992) Atmospheric pressure and gravity. Geophys J Int 109:488–500

    Article  Google Scholar 

  • Penna NT, King MA, Stewart MP (2007) GPS height time series: short-period origins of spurious long-period signals. J Geophys Res 112(B2). doi:10.1029/2005JB004047

  • Petit G, Luzum B (2010) IERS Conventions (2010). IERS Technical note no 36, Verlag des Bundesamts für Kartographie und Geodäsie Frankfurt am, Main, pp 179

  • Petrov L, Boy J (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res-Solid Earth 109(B03405). doi:10.1029/2003JB002500

  • Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12:55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Schuh H, Estermann G, Crétaux JF, Bergé-Nguyen M, van Dam T (2003) Investigation of hydrological and atmospheric loading by space geodetic techniques. IAG Proc 126:123–132 Hwang C, Shum CK, Li JC (eds) International Workshop on Satellite Altimetry

    Google Scholar 

  • Stammer D, Wunsch C, Fukumori I, Marshall J (2002) State estimation in modern oceanographic research. Eos Trans AGU 83(27):294–295. doi:10.1029/2002EO000207

    Article  Google Scholar 

  • Tierney C, Wahr J, Zlotnicki V (2000) Short-period oceanic circulation: implications for satellite altimetry. Geophys Res Lett 27:1255– 1258

    Article  Google Scholar 

  • Tregoning P, van Dam TM (2005) Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys Res Lett 32(22). doi:10.1029/2005GL024104

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114(39). doi:10.1029/2009JB006344

  • Tregoning P, Watson C (2011) Correction to atmospheric effects and spurious signals in GPS analyses. J Geophys Res 116(B2). doi:10.1029/2010JB008157

  • Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36(15). doi:10.1029/2009GL038718

  • van Dam TM, Wahr JM (1987) Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. J Geophys Res 92(B2):1281–1286

    Article  Google Scholar 

  • van Dam TM, Herring TA (1994) Detection of atmospheric pressure loading using very long baseline interferometry measurements. J Geophys Res 99(B3):4505–4517

    Article  Google Scholar 

  • van Dam TM, Blewitt G, Heflin MB (1994) Atmospheric pressure loading effects on global positioning system coordinate determinations. J Geophys Res 99(B12):23939–23950

    Article  Google Scholar 

  • van Dam TM, Collilieux X, Altamimi Z, Ray J (2012) Nontidal ocean loading: amplitudes and potential effects in GPS height time series. J Geod 86(11):1043–1057. doi:10.1007/s00190-012-0564-5

  • Williams SDP, Penna NT (2011) Non-tidal ocean loading effects on geodetic GPS heights. Geophys Res Lett 38(9). doi:10.1029/2011GL046940

  • Wunsch C (1972) Bermuda sea level in relation to tides, weather, and baroclinic fluctuations. Rev Geophys 10:1–49

    Article  Google Scholar 

  • Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic inverted barometer effect. Rev Geophys 31:79–107

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. doi:10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgments

A. Mémin was supported by an Australian Research Council Super Science Fellowship (FS110200045). We thank the International GNSS Service and Geoscience Australia for making the GPS data used in this study freely available. The GPS data were computed on the Terrawulf II computational facility at the Research School of Earth Sciences, a facility supported through the AuScope initiative. AuScope Ltd. is funded under the National Collaborative Research Infrastructure Strategy (NCRIS), an Australian Commonwealth Government Programme. The authors thank F. Lyard and J.-P. Boy for providing the grids of the hydrodynamic Toulouse Unstructured Grid Ocean model. We also thank T. Van Dam for providing the loading time series computed using the ECCO model. The authors acknowledge comments from two anonymous reviewers, T. Van Dam and S. Williams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mémin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mémin, A., Watson, C., Haigh, I.D. et al. Non-linear motions of Australian geodetic stations induced by non-tidal ocean loading and the passage of tropical cyclones. J Geod 88, 927–940 (2014). https://doi.org/10.1007/s00190-014-0734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0734-8

Keywords

Navigation