Skip to main content
Log in

Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Water vapor tomography has been developed as a powerful tool to model spatial and temporal distribution of atmospheric water vapor. Global navigation satellite systems (GNSS) water vapor tomography refers to the 3D structural construction of tropospheric water vapor using a large number of GNSS signals that penetrate the tomographic modeling area from different positions. The modeling area is usually discretized into a number of voxels. A major issue involved is that some voxels are not crossed by any GNSS signal rays, resulting in an undetermined solution to the tomographic system. To alleviate this problem, the number of voxels crossed by GNSS signal rays should be as large as possible. An important way to achieve this is to optimize the geographic distribution of tomographic voxels. We propose an approach to optimize voxel distribution in both vertical and horizontal domains. In the vertical domain, water vapor profiles derived from radiosonde data are exploited to identify the maximum height of tomography and the optimal vertical resolution. In the horizontal domain, the optimal horizontal distribution of voxels is obtained by searching the maximum number of ray-crossing voxels in both latitude and longitude directions. The water vapor tomography optimization procedures are implemented using GPS water vapor data from the Hong Kong Satellite Positioning Reference Station Network. The tomographic water vapor fields solved from the optimized tomographic voxels are evaluated using radiosonde data and a numerical weather prediction non-hydrostatic model (NHM) obtained for the Hong Kong station. The comparisons of tomographic integrated water vapor (IWV) with the radiosonde and NHM IWV show that RMS errors of their differences are 1.41 and 3.09 mm, respectively. Moreover, the tomographic water vapor density results are compared with those of radiosonde and NHM. The RMS error of the density differences between tomography and radiosonde data is 1.05 \(\mathrm{g/m}^{3}\). For the comparison between tomography and NHM, an overall RMS error of \(1.43\,\mathrm{g/m^{3}}\) is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adeyemi B, Joerg S (2012) Analysis of water vapor over nigeria using radiosonde and satellite data. J Appl Meteorol Climatol 51:1855–1866. doi:10.1175/JAMC-D-11-0119.1

    Article  Google Scholar 

  • Alber C, Ware R, Rocken C, Braun J (2000) Obtaining single path phase delays from GPS double differences. Geophys Res Lett 27:2661–2664

    Article  Google Scholar 

  • Bender M, Dick G, Ge M et al (2011) Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv Space Res 47:1704–1720. doi:10.1016/j.asr.2010.05.034

    Article  Google Scholar 

  • Bender M, Raabe A (2007) Preconditions to ground based GPS water vapour tomography. Ann Geophys 25:1727–1734

    Google Scholar 

  • Bevis M, Businger S, Herring TA et al (1992) GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J Geophys Res Atmos 1984–2012(97):15787–15801

    Article  Google Scholar 

  • Bi Y, Mao J, Li C (2006) Preliminary results of 4D water vapor tomography in the troposphere using GPS. Adv Atmos Sci 23:551–560. doi:10.1007/s00376-006-0551-y

    Article  Google Scholar 

  • Braun J, Rocken C, Ware R (2001) Validation of line-of-sight water vapor measurements with GPS. Radio Sci 36:459–472

    Article  Google Scholar 

  • Champollion C, Masson F, Bouin M-N et al (2005) GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmospheric Res 74:253–274. doi:10.1016/j.atmosres.2004.04.003

    Article  Google Scholar 

  • Chan ST, Chan TF, Wong WK (2010) An intercomparison of WRF-ARW and JMA-NHM performance in prediction of tropical cyclones over the South China Sea in (2008). In: 29th conference hurricanes and tropical meteorology. Am Meteorol Soc

  • Chen Y, Liu Y, Wang X, Li P (2007) GPS real-time estimation of precipitable water vapor-Hong Kong experiences. Acta Geod Cartogr Sin 36:9–12

    Google Scholar 

  • Duan J, Bevis M, Fang P et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35:830–838

    Article  Google Scholar 

  • Emardson TR, Johansson J, Elgered G (2000) The systematic behavior of water vapor estimates using four years of GPS observations. IEEE Trans Geosci Remote Sens 38:324–329

    Article  Google Scholar 

  • Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delays. Ann Geophys 18:223–234

    Article  Google Scholar 

  • Gendt G, Dick G, Reigber C et al (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Jpn 82:361–370

    Article  Google Scholar 

  • Griffiths J, Ray JR (2009) On the precision and accuracy of IGS orbits. J Geod 83:277–287. doi:10.1007/s00190-008-0237-6

    Article  Google Scholar 

  • Haan SD, Holleman I, Holtslag AAM (2009) Real-time water vapor maps from a GPS surface network: construction, validation, and applications. J Appl Meteorol Climatol 48:1302–1316. doi:10.1175/2008JAMC2024.1

    Article  Google Scholar 

  • Hirahara K (2000) Local GPS tropospheric tomography. Earth Planets Space 52:935–939

    Google Scholar 

  • Lee S-W, Kouba J, Schutz B et al (2013) Monitoring precipitable water vapor in real-time using global navigation satellite systems. J Geod. doi:10.1007/s00190-013-0655-y

    Google Scholar 

  • Liu Z, Wong MS, Nichol J, Chan PW (2013) A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong. Int J Climatol 33:109–120. doi:10.1002/joc.3412

    Google Scholar 

  • Lutz S (2009) High-resolution GPS tomography in view of hydrological hazard assessment. Schweizerische Geodätische Kommission

  • Mohanakumar K (2008) Structure and composition of the lower and middle atmosphere. In: Stratosphere troposphere interactions: an introduction. Springer, New York

  • Moore AW, Neilan RE (2005) The International GPS Service tracking network: Enabling diverse studies and projects through international cooperation. J Geodyn 40:461–469. doi:10.1016/j.jog.2005.10.009

    Article  Google Scholar 

  • Niell AE, Coster AJ, Solheim FS et al (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Ocean Technol 18:830–850

    Article  Google Scholar 

  • Nilsson T, Gradinarsky L (2006) Water vapor tomography using GPS phase observations: simulation results. IEEE Trans Geosci Remote Sens 44:2927–2941. doi:10.1109/TGRS.2006.877755

    Article  Google Scholar 

  • Notarpietro R, Cucca M, Gabella M et al (2011) Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks. Adv Space Res 47:898–912. doi:10.1016/j.asr.2010.12.025

    Article  Google Scholar 

  • Perler D (2012) Water vapor tomography using global navigation satellite systems. Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20012, 2011

  • Perler D, Geiger A, Hurter F (2011) 4D GPS water vapor tomography: new parameterized approaches. J Geod 85:539–550. doi:10.1007/s00190-011-0454-2

    Article  Google Scholar 

  • Raja MKRV, Gutman SI, Yoe JG et al (2008) The validation of AIRS retrievals of integrated precipitable water vapor using measurements from a network of ground-based GPS receivers over the contiguous United States. J Atmos Ocean Technol 25:416–428. doi:10.1175/2007JTECHA889.1

    Article  Google Scholar 

  • Rocken C, Ware R, Van Hove T et al (1993) Sensing atmospheric water vapor with the global positioning system. Geophys Res Lett 20:2631–2634

    Article  Google Scholar 

  • Rohm W (2013) The ground GNSS tomography—unconstrained approach. Adv Space Res 51:501–513. doi:10.1016/j.asr.2012.09.021

    Article  Google Scholar 

  • Rohm W (2012) The precision of humidity in GNSS tomography. Atmos Res 107:69–75. doi:10.1016/j.atmosres.2011.12.008

    Article  Google Scholar 

  • Rohm W, Bosy J (2011) The verification of GNSS tropospheric tomography model in a mountainous area. Adv Space Res 47:1721–1730. doi:10.1016/j.asr.2010.04.017

    Article  Google Scholar 

  • Rohm W, Bosy J (2009) Local tomography troposphere model over mountains area. Atmospheric Res 93:777–783. doi:10.1016/j.atmosres.2009.03.013

    Article  Google Scholar 

  • Skone S, Hoyle V (2005) Troposphere modeling in a regional GPS network. J Glob Position Syst 4:230–239

    Article  Google Scholar 

  • Smith TL, Benjamin SG, Gutman SI, Sahm S (2007) Short-range forecast impact from assimilation of GPS-IPW observations into the rapid update cycle. Mon Weather Rev 135:2914–2930. doi:10.1175/MWR3436.1

    Article  Google Scholar 

  • Troller M, Geiger A, Brockmann E et al (2006) Tomographic determination of the spatial distribution of water vapor using GPS observations. Adv Space Res 37:2211–2217. doi:10.1016/j.asr.2005.07.002

    Article  Google Scholar 

  • Ware R, Alber C, Rocken C, Solheim F (1997) Sensing integrated water vapor along GPS ray paths.pdf. Geophys Res Lett 24:417–420

    Article  Google Scholar 

  • Wen D, Yuan Y, Ou J et al (2008) A hybrid reconstruction algorithm for 3-D ionospheric tomography. IEEE Trans Geosci Remote Sens 46:1733–1739. doi:10.1109/TGRS.2008.916466

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Hong Kong Research Grants Council (RGC) General Research Fund (GRF) project PolyU 5217/11E. The support from the National Natural Science Foundation of China (No. 41274039) is gratefully acknowledged. Zhizhao Liu also thanks the Program of Introducing Talents of Discipline to Universities (Wuhan University, GNSS Research Center), China. Mr. Sai Tick Chan, Mr. Wang Chun Woo and Mr. P. W. Chan from the Hong Kong Observatory, Government of Hong Kong Special Administrative Region (HKSAR), are acknowledged for providing the NHM data. The Lands Department of HKSAR is acknowledged for providing the GPS data from the Hong Kong Satellite Positioning Reference Station Network (SatRef). The International GNSS Service (IGS) is acknowledged for providing precise GPS satellite orbit data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Liu, Z. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J Geod 88, 691–703 (2014). https://doi.org/10.1007/s00190-014-0715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0715-y

Keywords

Navigation