Skip to main content
Log in

How to solve a design centering problem

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

This work considers the problem of design centering. Geometrically, this can be thought of as inscribing one shape in another. Theoretical approaches and reformulations from the literature are reviewed; many of these are inspired by the literature on generalized semi-infinite programming, a generalization of design centering. However, the motivation for this work relates more to engineering applications of robust design. Consequently, the focus is on specific forms of design spaces (inscribed shapes) and the case when the constraints of the problem may be implicitly defined, such as by the solution of a system of differential equations. This causes issues for many existing approaches, and so this work proposes two restriction-based approaches for solving robust design problems that are applicable to engineering problems. Another feasible-point method from the literature is investigated as well. The details of the numerical implementations of all these methods are discussed. The discussion of these implementations in the particular setting of robust design in engineering problems is new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Malek HL, Hassan AKSO (1991) The ellipsoidal technique for design centering and region approximation. IEEE Trans Comput Aided Des Integr Circuits Syst 10(8):1006–1014

    Article  Google Scholar 

  • Aubin J-P, Frankowska H (1990) Set-valued analysis. Birkhauser, Boston

    MATH  Google Scholar 

  • Bank B, Guddat J, Klatte D, Kummer B, Tammer K (1983) Non-linear parametric optimization. Birkhauser, Boston

    MATH  Google Scholar 

  • Bemporad A, Filippi C, Torrisi FD (2004) Inner and outer approximations of polytopes using boxes. Comput Geom 27(2):151–178

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Bertsekas DP (2009) Convex optimization theory. Athena Scientific, Belmont

    MATH  Google Scholar 

  • Bhattacharjee B, Green WH, Barton PI (2005) Interval methods for semi-infinite programs. Comput Optim Appl 30(1):63–93

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharjee B, Lemonidis P, Green WH, Barton PI (2005) Global solution of semi-infinite programs. Mathematical Programming, Series B 103:283–307

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Chachuat B (2015) MC++: A Versatile Library for McCormick Relaxations and Taylor Models. http://www.imperial.ac.uk/people/b.chachuat/research.html

  • Diehl M, Houska B, Oliver Stein, Steuermann P (2013) A lifting method for generalized semi-infinite programs based on lower level Wolfe duality. Comput Optim Appl 54(1):189–210

    Article  MathSciNet  MATH  Google Scholar 

  • Du K, Kearfott RB (1994) The cluster problem in multivariate global optimization. J Global Optim 5(3):253–265

  • Floudas CA, Gümüş ZH, Ierapetritou MG (2001) Global optimization in design under uncertainty: feasibility test and flexibility index problems. Ind Eng Chem Res 40:4267–4282

    Article  Google Scholar 

  • GAMS Development Corporation (2014) GAMS: General Algebraic Modeling System. http://www.gams.com

  • Geoffrion AM (1971) Duality in nonlinear programming: a simplified applications-oriented development. SIAM Rev 13(1):1–37

    Article  MathSciNet  MATH  Google Scholar 

  • Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd Stephen, Kimura H (eds) Recent advances in learning and control, lecture notes in control and information sciences. Springer, Berlin, pp 95–110

  • Grant M, Boyd S (2014) CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx

  • Günzel H, Jongen HTh, Stein O (2007) On the closure of the feasible set in generalized semi-infinite programming. Central Eur J Oper Res 15(3):271–280

    Article  MathSciNet  MATH  Google Scholar 

  • Günzel H, Jongen H Th, Stein O (2008) Generalized semi-infinite programming: on generic local minimizers. J Global Optim 42(3):413–421

  • Halemane KP, Grossmann IE (1983) Optimal process design under uncertainty. AIChE J 29(3):425–433

    Article  MathSciNet  Google Scholar 

  • Harwood SM, Barton PI (2016) Lower level duality and the global solution of generalized semi-infinite programs. Optimization 65(6):1129–1149

    Article  MathSciNet  MATH  Google Scholar 

  • Hendrix EMT, Mecking CJ, Hendriks THB (1996) Finding robust solutions for product design problems. Eur J Oper Res 92(1):28–36

    Article  MATH  Google Scholar 

  • Hettich R, Kortanek KO (1993) Semi-infinite programming: theory, methods, and applications. SIAM Rev 35(3):380–429

    Article  MathSciNet  MATH  Google Scholar 

  • Houska B, Logist F, Van Impe J, Diehl M (2012) Robust optimization of nonlinear dynamic systems with application to a jacketed tubular reactor. J Process Control 22(6):1152–1160

    Article  Google Scholar 

  • Kanzi N, Nobakhtian S (2010) Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems. Eur J Oper Res 205(2):253–261

    Article  MathSciNet  MATH  Google Scholar 

  • Khachiyan LG, Todd MJ (1993) On the complexity of approximating the maximal inscribed ellipsoid for a polytope. Math Programm 61(1–3):137–159

    Article  MathSciNet  MATH  Google Scholar 

  • Klatte D, Kummer B (1985) Stability properties of infima and optimal solutions of parametric optimization problems. Lect Notes Econ Math Syst 255:215–229

    Article  MathSciNet  MATH  Google Scholar 

  • Loeblein C, Perkins JD (1998) Economic analysis of different structures of on-line process optimization systems. Comput Chem Eng 22(9):1257–1269

    Article  Google Scholar 

  • Lofberg J (2004) YALMIP: A toolbox for modeling and optimization in MATLAB. In: 2004 IEEE international conference on computer aided control systems design, pp 284–289

  • Mattheij R, Molenaar J (2002) Ordinary differential equations in theory and practice. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Misener R, Floudas CA (2014) ANTIGONE: algorithms for coNTinuous/integer global optimization of nonlinear equations. J Global Optim 59(2–3):503–526

    Article  MathSciNet  MATH  Google Scholar 

  • Mitsos A, Lemonidis P, Barton PI (2008) Global solution of bilevel programs with a nonconvex inner program. J Global Optim 42(4):475–513

    Article  MathSciNet  MATH  Google Scholar 

  • Mitsos A, Chachuat B, Barton PI (2009) McCormick-based relaxations of algorithms. SIAM J Optim 20(2):573–601

    Article  MathSciNet  MATH  Google Scholar 

  • Mitsos A (2011) Global optimization of semi-infinite programs via restriction of the right-hand side. Optimization 60(10–11):1291–1308

    Article  MathSciNet  MATH  Google Scholar 

  • Mitsos A, Tsoukalas A (2014) Global optimization of generalized semi-infinite programs via restriction of the right hand side. J Global Optim 61(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis, SIAM, Philadelphia

  • MOSEK (2015) http://www.mosek.com/

  • Nesterov Y, Nemirovski A (1994) Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia

    Book  Google Scholar 

  • Nguyen VH, Strodiot J-J (1992) Computing a global optimal solution to a design centering problem. Math Programm 53(1–3):111–123

    Article  MathSciNet  MATH  Google Scholar 

  • Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for robust optimal design. J Mech Des 115(1):74–80

    Article  Google Scholar 

  • Polak E (1987) On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev 29(1):21–89

    Article  MathSciNet  Google Scholar 

  • Polik I, Terlaky T (2007) A Survey of the S-Lemma. SIAM Rev 49(3):371–418

    Article  MathSciNet  MATH  Google Scholar 

  • Ralph D, Dempe S (1995) Directional derivatives of the solution of a parametric nonlinear program. Math Programm 70:159–172

    MathSciNet  MATH  Google Scholar 

  • Rocco CM, Moreno J, Carrasquero N (2003) Robust design using a hybrid-cellular-evolutionary and interval-arithmetic approach: a reliability application. Reliab Eng Syst Saf 79(2):149–159

    Article  Google Scholar 

  • Rückmann J-J, Shapiro A (1999) First-order optimality conditions in generalized semi-infinite programming. J Optim Theory Appl 101(3):677–691

    Article  MathSciNet  MATH  Google Scholar 

  • Sahinidis NV (2014) BARON 14.0.3: global optimization of mixed-integer nonlinear programs, user’s manual. http://www.minlp.com/downloads/docs/baronmanual.pdf

  • Salazar DE, Rocco CM (2007) Solving advanced multi-objective robust designs by means of multiple objective evolutionary algorithms (MOEA): A reliability application. Reliab Eng Syst Saf 92(6):697–706

    Article  Google Scholar 

  • Schaber SD (2014) Tools for dynamic model development. PhD thesis, Massachusetts Institute of Technology

  • Scott JK (2012) Reachability analysis and deterministic global optimization of differential-algebraic systems. PhD thesis, Massachusetts Institute of Technology

  • Scott JK, Barton PI (2013) Bounds on the reachable sets of nonlinear control systems. Automatica 49(1):93–100

    Article  MathSciNet  MATH  Google Scholar 

  • SeDuMi (2015): Optimization over symmetric cones. http://sedumi.ie.lehigh.edu/

  • Seifi A, Ponnambalam K, Vlach J (1999) A unified approach to statistical design centering of integrated circuits with correlated parameters. IEEE Trans Circuits Syst I Fundam Theory Appl 46(1):190–196

    Article  Google Scholar 

  • Stein O (2006) A semi-infinite approach to design centering. In: Dempe S, Kalashnikov V (eds) Optimization with mulitvalued mappings, chapter 1. Springer, Berlin, pp 209–228

    Chapter  Google Scholar 

  • Stein O (2012) How to solve a semi-infinite optimization problem. Eur J Oper Res 223(2):312–320

    Article  MathSciNet  MATH  Google Scholar 

  • Stein O, Still G (2003) Solving semi-infinite optimization problems with interior point techniques. SIAM J Control Optim 42(3):769–788

    Article  MathSciNet  MATH  Google Scholar 

  • Stein O, Winterfeld A (2010) Feasible method for generalized semi-infinite programming. J Optim Theory Appl 146(2):419–443

    Article  MathSciNet  MATH  Google Scholar 

  • Still G (1999) Generalized semi-infinite programming: theory and methods. Eur J Oper Res 119:301–313

    Article  MATH  Google Scholar 

  • Stuber MD, Barton PI (2011) Robust simulation and design using semi-infinite programs with implicit functions. Int J Reliab Saf 5(3–4):378–397

    Article  Google Scholar 

  • Stuber MD, Barton PI (2015) Semi-infinite optimization with implicit functions. Ind Eng Chem Res 54(5):307–317

    Article  Google Scholar 

  • Sturm JF (1999) Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim Methods Soft 11(1–4):625–653

  • Swaney RE, Grossmann IE (1985a) An index for operational flexibility in chemical process design–part I: formulation and theory. AIChE J 31(4):621–630

    Article  Google Scholar 

  • Swaney RE, Grossmann IE (1985b) An index for operational flexibility in chemical process design–part II: computational algorithms. AIChE J 31(4):631–641

    Article  Google Scholar 

  • Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Math Programm 103(2):225–249

    Article  MathSciNet  MATH  Google Scholar 

  • Tsoukalas A, Rustem B, Pistikopoulos EN (2009) A global optimization algorithm for generalized semi-infinite, continuous minimax with coupled constraints and bi-level problems. J Global Optim 44(2):235–250

    Article  MathSciNet  MATH  Google Scholar 

  • Wechsung A (2013) Global optimization in reduced space. PhD thesis, Massachusetts Institute of Technology

  • Wechsung A, Schaber SD, Barton PI (2014) The cluster problem revisited. J Global Optim 58(3):429–438

    Article  MathSciNet  MATH  Google Scholar 

  • Winterfeld A (2008) Application of general semi-infinite programming to lapidary cutting problems. Eur J Oper Res 191(3):838–854

    Article  MathSciNet  MATH  Google Scholar 

  • YALMIP (2015) http://users.isy.liu.se/johanl/yalmip/

Download references

Acknowledgements

Funding was provided by Novartis Pharmaceuticals Corporation (IDOEJOAE572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul I. Barton.

Additional information

This research was funded by Novartis Pharmaceuticals as part of the Novartis-MIT Center for Continuous Manufacturing.

Appendices

Appendix

Convergence of bounding method from Sect. 5.1.1

Let \([\mathbf {v}^U, \mathbf {w}^L] \subset [\mathbf {v}^L, \mathbf {w}^U] \subset [{\bar{\mathbf {y}}}^L, {\bar{\mathbf {y}}}^U] \subset \mathbb {R}^{n_y}\). Let

$$\begin{aligned} Y_j^{v}&= [v_1^L, w_1^U] \times \dots \times [v_{j-1}^L, w_{j-1}^U] \times [v_j^L, v_j^U] \times {[}v_{j+1}^L, w_{j+1}^U] \times \dots \times [v_{n_y}^L, w_{n_y}^U],\\ Y_j^{w}&= [v_1^L, w_1^U] \times \dots \times [v_{j-1}^L, w_{j-1}^U] \times [w_j^L, w_j^U] \times [v_{j+1}^L, w_{j+1}^U] \times \dots \times [v_{n_y}^L, w_{n_y}^U], \end{aligned}$$

for each \(j \in \{1, \dots , n_y\}\). Then it is easy to see that the “outer” interval \([\mathbf {v}^L, \mathbf {w}^U]\) is a subset of \([\mathbf {v}^U, \mathbf {w}^L] \cup \big ( \bigcup _j (Y_j^v \cup Y_j^w) \big )\); for any \(\mathbf {y}\in [\mathbf {v}^L, \mathbf {w}^U]\), each component \(y_j\) lies in one of \([v_j^L, v_j^U]\), \([v_j^U, w_j^L]\), or \([w_j^L,w_j^U]\), which is included in the definition of one of \(Y_j^v\), \([\mathbf {v}^U, \mathbf {w}^L]\), or \(Y_j^w\).

Thus

$$\begin{aligned} \mathrm {vol}([\mathbf {v}^L, \mathbf {w}^U])&\le \mathrm {vol}([\mathbf {v}^U, \mathbf {w}^L]) + \sum _j \mathrm {vol}(Y_j^v) + \mathrm {vol}(Y_j^w) \\&= \mathrm {vol}([\mathbf {v}^U, \mathbf {w}^L]) + \sum _j ( (v_j^U - v_j^L) + (w_j^U - w_j^L) ) \prod _{k \ne j} (w_k^U - v_k^L). \end{aligned}$$

Let \(\alpha = \,\mathrm {diam}([{\bar{\mathbf {y}}}^L, {\bar{\mathbf {y}}}^U])\). Then \((w_k^U - v_k^L) \le \alpha \) for each k. If \(X' = [\mathbf {v}^L,\mathbf {v}^U] \times [\mathbf {w}^L, \mathbf {w}^U]\), then \((v_j^U - v_j^L) + (w_j^U - w_j^L) \le 2 \,\mathrm {diam}(X')\) for each j. Putting all these inequalities together one obtains

$$\begin{aligned} \mathrm {vol}([\mathbf {v}^L, \mathbf {w}^U]) - \mathrm {vol}([\mathbf {v}^U, \mathbf {w}^L]) \le 2 n_y \alpha ^{n_y-1} \,\mathrm {diam}(X'). \end{aligned}$$

Thus assuming \([\mathbf {y}^L,\mathbf {y}^U] \subset [{\bar{\mathbf {y}}}^L, {\bar{\mathbf {y}}}^U]\) for all \((\mathbf {y}^L,\mathbf {y}^U) \in X\), this establishes that the bounding method described in § 5.1.1 is at least first-order convergent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harwood, S.M., Barton, P.I. How to solve a design centering problem. Math Meth Oper Res 86, 215–254 (2017). https://doi.org/10.1007/s00186-017-0591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-017-0591-3

Keywords

Navigation