Skip to main content
Log in

Coefficients of ergodicity for Markov chains with uncertain parameters

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

One of the central considerations in the theory of Markov chains is their convergence to an equilibrium. Coefficients of ergodicity provide an efficient method for such an analysis. Besides giving sufficient and sometimes necessary conditions for convergence, they additionally measure its rate. In this paper we explore coefficients of ergodicity for the case of imprecise Markov chains. The latter provide a convenient way of modelling dynamical systems where parameters are not determined precisely. In such cases a tool for measuring the rate of convergence is even more important than in the case of precisely determined Markov chains, since most of the existing methods of estimating the limit distributions are iterative. We define a new coefficient of ergodicity that provides necessary and sufficient conditions for convergence of the most commonly used class of imprecise Markov chains. This so-called weak coefficient of ergodicity is defined through an endowment of the structure of a metric space to the class of imprecise probabilities. Therefore we first make a detailed analysis of the metric properties of imprecise probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beer G (1993) Topologies on closed and closed convex sets. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Birkhoff G (1957) Extensions of Jentzsch’s theorem. Trans Am Math Soc 85(1): 219–227

    MathSciNet  MATH  Google Scholar 

  • Crossman RJ, Škulj D (2010) Imprecise Markov chains with absorption. Int J Approx Reason 51: 1085–1099. doi:10.1016/j.ijar.2010.08.008

    Article  MATH  Google Scholar 

  • Crossman RJ, Coolen-Schrijner P, Coolen FPA (2009a) Time-homogeneous birth-death processes with probability intervals and absorbing state. J Stat Theory Practice 3(1): 103–118

    Article  MathSciNet  MATH  Google Scholar 

  • Crossman RJ, Coolen-Schrijner P, Škulj D, Coolen FPA (2009b) Imprecise Markov chains with an absorbing state. In: Augustin T, Coolen FPA, Moral S, Troffaes MCM (eds) ISIPTA’09: proceedings of the sixth international symposium on imprecise probability: theories and applications, SIPTA, Durham, UK, pp 119–128

  • Darroch JN, Seneta E (1965) On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J Appl Probab 2(1):88–100, http://www.jstor.org/stable/3211876

    Google Scholar 

  • de Campos LD, Huete J, Moral S (1994) Probability intervals: a tool for uncertain reasoning. Int J Uncertain Fuzz Knowl Based Syst 2(2): 167–196

    Article  MATH  Google Scholar 

  • De Cooman G, Hermans F, Quaeghebeur E (2009) Imprecise Markov chains and their limit behavior. Probab Eng Inform Sci 23(4): 597–635. doi:10.1017/S0269964809990039

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrushin R (1956) Central limit theorem for non-stationary Markov chains, I, II. Theory Probab Appl 1(4): 329–383

    Article  Google Scholar 

  • Dunford N, Schwartz J (1988) Linear operators. Part I: general theory. Wiley, New York

    MATH  Google Scholar 

  • Fan K (1953) Minimax theorems. Proc Natl Acad Sci USA 39: 42–47

    Article  MATH  Google Scholar 

  • Hable R (2009) Data-based decisions under complex uncertainty. PhD thesis, Ludwig-Maximilians-Universität (LMU) Munich, http://edoc.ub.uni-muenchen.de/9874/

  • Hable R (2010) Minimum distance estimation in imprecise probability models. J Stat Plan Inference 140: 461–479

    Article  MathSciNet  MATH  Google Scholar 

  • Harmanec D (2002) Generalizing Markov decision processes to imprecise probabilities. J Stat Plan Inference 105: 199–213

    Article  MathSciNet  MATH  Google Scholar 

  • Hartfiel D (1998) Markov set-chains. Springer, Berlin

    MATH  Google Scholar 

  • Hartfiel D, Rothblum U (1998) Convergence of inhomogenous products of matrices and coefficients of ergodicity. Linear Algebra Appl 277: 1–9

    Article  MathSciNet  MATH  Google Scholar 

  • Hartfiel D, Seneta E (1994) On the theory of Markov set-chains. Adv Appl Probab 26(4): 947–964

    Article  MathSciNet  MATH  Google Scholar 

  • Holmes RB (1975) Geometric functional analysis and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Itoh H, Nakamura K (2007) Partially observable Markov decision processes with imprecise parameters. Artif Intell 171(8–9): 453–490

    Article  MathSciNet  MATH  Google Scholar 

  • Kozine I, Utkin L (2002) Interval-valued finite Markov chains. Reliable Comput 8(2): 97–113

    Article  MathSciNet  MATH  Google Scholar 

  • Nilim A, Ghaoui LE (2005) Robust control of Markov decision processes with uncertain transition matrices. Oper Res 53: 780–798

    Article  MathSciNet  MATH  Google Scholar 

  • Paz A (1970) Ergodic theorems for infinite probabilistic tables. Ann Math Stat 41(2): 539–550

    Article  MathSciNet  MATH  Google Scholar 

  • Satia J, Lave R (1973) Markovian decision processes with uncertain transition probabilities. Oper Res 21(3): 728–740

    Article  MathSciNet  MATH  Google Scholar 

  • Seneta E (1979) Coefficients of ergodicity—structure and applications. Adv Appl Probab 11(2): 270–271

    Article  MathSciNet  Google Scholar 

  • Seneta E (2006) Non-negative matrices and Markov chains. Springer, Berlin

    MATH  Google Scholar 

  • Škulj D (2006) Finite discrete time Markov chains with interval probabilities. In: Lawry J, Miranda E, Bugarín A, Li S, Gil MA, Grzegorzewski P, Hryniewicz O (eds) SMPS. Advances in soft computing. Springer, Berlin, vol 37, pp 299–306

  • Škulj D (2007) Regular finite Markov chains with interval probabilities. In: De Cooman G, Zaffalon M, Vejnarová J (eds) ISIPTA’07—proceedings of the fifth international symposium on imprecise probability: theories and applications, SIPTA, pp 405–413

  • Škulj D (2009) Discrete time Markov chains with interval probabilities. Int J Approx Reason 50(8): 1314–1329. doi:10.1016/j.ijar.2009.06.007

    Article  MATH  Google Scholar 

  • Škulj D, Hable R (2009) Coefficients of ergodicity for imprecise Markov chains. In: Augustin T, Coolen FPA, Moral S, Troffaes MCM (eds) ISIPTA’09: proceedings of the sixth international symposium on imprecise probability: theories and applications, SIPTA, Durham, UK, pp 377–386

  • Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, London

    MATH  Google Scholar 

  • Walley P (2000) Towards a unified theory of imprecise probability. Int J Approx Reason 24: 125–148

    Article  MathSciNet  MATH  Google Scholar 

  • Weichselberger K (2001) Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung. I: Intervallwahrscheinlichkeit als umfassendes Konzept. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  • White C, Eldeib H (1994) Markov decision processes with imprecise transition probabilities. Oper Res 42(4): 739–749

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Škulj.

Additional information

An earlier version of this paper, Škulj and Hable (2009), was presented at the ISIPTA’09 conference in Durham, UK, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Škulj, D., Hable, R. Coefficients of ergodicity for Markov chains with uncertain parameters. Metrika 76, 107–133 (2013). https://doi.org/10.1007/s00184-011-0378-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-011-0378-0

Keywords

Navigation