Skip to main content
Log in

A matrix exponential spatial specification approach to panel data models

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

This paper extends the matrix exponential spatial specification to panel data models. The matrix exponential spatial panel specification produces estimates and inferences comparable to those from conventional spatial panel models, but has computational advantages. We present maximum likelihood approach to the estimation of this spatial model specification and compare the results with the fixed effects spatial autoregressive panel model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It is assumed spatial weight matrix to be constant through time.

  2. Notice \(\mathbf{q}\) is symmetric.

  3. Extensively approached in Baltagi (2008).

  4. Where \(\mathbf{j}_p\) is a vector of \(1\)’s and \(p\) is the dimension of \(\varvec{\beta }\).

References

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Baltagi BH (2008) Econometric analysis of panel data, 4th edn. Wiley, London

    Google Scholar 

  • Elhorst P (2003) Specification and estimation of spatial panel data models. Int Reg Sci Rev 26:244–268

    Article  Google Scholar 

  • Haining R (2004) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Google Scholar 

  • Horn R, Johnson C (1988) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hsiao C (2003) Analysis of panel data, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kapoor M, Kelejian H, Prucha I (2007) Panel data models with spatially correlated error components. J Econ 140:97–130

    Article  Google Scholar 

  • Kelejian H, Prucha I (2002) A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev 40(2):509–533

    Article  Google Scholar 

  • LeSage JP, Pace K (2007) A matrix exponential spatial specification. J Econ 140:190–214

    Article  Google Scholar 

  • Ord J (1975) Estimation methods for models of spatial interaction. J Am Stat Assoc 70:120–126

    Article  Google Scholar 

  • Silva AR, Alves PF (2007) Computational algorithm for estimation of panel data models with two fixed effects. Braz J Math Stat 25(2):19–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calebe Figueiredo.

Appendix

Appendix

1.1 The FESAR estimation

Usually, \(\mathbf{X}\) has a vector of \(1\)’s for estimating the intercept. The fixed effect \(\mathbf{c}\) is restricted so that \(\mathbf{j}_N ' \mathbf{c}=0\). Thus, the interpretation of the fixed effect \(c_i\) is the difference between the \(i\)th observation mean and the overall mean.

In practice, using the within transformation, the presence of intercept does not make any difference because all effects constants through time are dropped. Therefore, the model (1) can be rewritten as

$$\begin{aligned} \mathbf{Q}\mathbf{y}&= \mathbf{Q}\mathbf{X}\varvec{\beta } +\mathbf{Q}\varvec{\epsilon } \end{aligned}$$
(12)
$$\begin{aligned} \mathbf{Q}&= \mathbf{I}_{ NT }-\left( \frac{1}{T} \mathbf{j}_T \mathbf{j}_T '\otimes \mathbf{I}_N \right) \end{aligned}$$
(13)

The likelihood function of the FESAR model considering the within transformation is

$$\begin{aligned} \mathcal {L}(\varvec{\beta },\sigma ^2,\rho )=(2\pi \sigma ^2)^{-\frac{ NT }{2}}\hbox {exp}\left\{ -\frac{1}{2\sigma ^2} (\mathbf{SQy}-\mathbf{QX}\varvec{\beta })'(\mathbf{SQy}-\mathbf{QX}\varvec{\beta }) \right\} |\mathbf{S}| \end{aligned}$$

Fixing \(\varvec{\beta }\) and \(\sigma ^2\), we can find the likelihood function only for \(\rho \). Thus, let \(\tilde{\varvec{\beta }}=(\mathbf{X'QX})^{-1}\mathbf{X'Qy}\) and \(\tilde{\sigma }^2=\frac{1}{ NT }\mathbf{y'S'PSy}\), where \(\mathbf{P}\) is the orthogonal projections matrix given by \(\mathbf{P} = \mathbf{I}_{ NT } - \mathbf{QX}(\mathbf{X'QX})^{-1}\mathbf{X'Q}\). Therefore, the likelihood for \(\rho \) is given by:

$$\begin{aligned} \mathcal {L}(\rho ,\sigma ^2,\varvec{\beta })&= (2\pi \sigma ^2)^{-\frac{ NT }{2}}\hbox {exp}\left\{ -\frac{1}{2\sigma ^2} (\mathbf{y'S'PSy})'(\mathbf{y'S'PSy}) \right\} |\mathbf{S}|\nonumber \\ \mathcal {L}(\rho )&= (2\pi )^{-\frac{ NT }{2}}\left( \frac{1}{T} \mathbf{y'S'PSy} \right) ^{-\frac{ NT }{2} }\hbox {exp}\left\{ -\frac{1}{2} NT \right\} |\mathbf{S}| \end{aligned}$$

Note that \(\mathbf{I}_{ NT }-\rho (\mathbf{I}_T\otimes \mathbf{W})=\mathbf{I}_T \otimes (\mathbf{I}_N-\rho \mathbf{W})\), and therefore, \(|\mathbf{S}|=| \mathbf{I}_{T}\otimes (\mathbf{I}_N-\rho \mathbf{W}) | = | \mathbf{I}_N - \rho \mathbf{W}|^T \). So, we can write (14) as

$$\begin{aligned} \mathcal {L}(\rho )&= k(\mathbf{y'S'PSy})^{-\frac{ NT }{2}}|\mathbf{I}_N - \rho \mathbf{W} |^{T}\end{aligned}$$
(14)
$$\begin{aligned} l (\rho )&= \log \; k - \frac{ NT }{2}\log \; (\mathbf{y'S'PSy} )+ T \;\log \; | \mathbf{I}_N - \rho \mathbf{W}| \end{aligned}$$
(15)

Using eigenvalues, (15) can be written as

$$\begin{aligned} l (\rho )=\log \; k -\frac{ NT }{2}\log \; (\mathbf{y'S'PSy} ) +T \sum _{i=1}^N \log \; (1- \rho \omega _i) \end{aligned}$$
(16)

where \(\omega _i\) is the \(i\)th eigenvalue of the matrix \(\mathbf{W}\).

Note that

$$\begin{aligned} \mathbf{y'S'PSy}=\mathbf{y}'\mathbf{P}\mathbf{y}\!-\!\rho \mathbf{y}'\mathbf{P}(\mathbf{I}_T\otimes \mathbf{W})\mathbf{y} \!-\! \rho \mathbf{y}'(\mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}\mathbf{y} + \rho ^2\mathbf{y}'(\mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}(\mathbf{I}_T \otimes \mathbf{W})\mathbf{y} \end{aligned}$$

because

$$\begin{aligned} \mathbf{y}'\mathbf{S}'\mathbf{P}\mathbf{S}\mathbf{y}&= \mathbf{y}'(\mathbf{I}_{ NT } \otimes (\mathbf{I}_N-\rho \mathbf{W}))'\mathbf{P}(\mathbf{I}_{ NT } \otimes (\mathbf{I}_N-\rho \mathbf{W}))\mathbf{y} \\&= \mathbf{y}'(\mathbf{I}_{ NT } \otimes (\mathbf{I}_N-\rho \mathbf{W}'))\mathbf{P}(\mathbf{I}_{ NT } \otimes (\mathbf{I}_N-\rho \mathbf{W}))\mathbf{y} \\&= \mathbf{y}'(\mathbf{I}_{ NT }-\rho \mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}(\mathbf{I}_{ NT }-\rho \mathbf{I}_T \otimes \mathbf{W})\mathbf{y} \\&= (\mathbf{y}' - \rho \mathbf{y}' \mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}(\mathbf{y}-\rho \mathbf{I}_T \otimes \mathbf{W}\mathbf{y}) \\&= \mathbf{y}'\mathbf{P}(\mathbf{y}-\rho (\mathbf{I}_T \otimes \mathbf{W})\mathbf{y})-\rho \mathbf{y}'(\mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}(\mathbf{y}-\rho (\mathbf{I}_T \otimes \mathbf{W})\mathbf{y}) \\&= \mathbf{y}'\mathbf{P}\mathbf{y} - \rho \mathbf{y}'\mathbf{P}(\mathbf{I}_T\otimes \mathbf{W})\mathbf{y} \!-\! \rho \mathbf{y}'(\mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}\mathbf{y}\!+\!\rho ^2 \mathbf{y}'(\mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}(\mathbf{I}_T \otimes \mathbf{W})\mathbf{y} \end{aligned}$$

Consequently, the likelihood for \(\rho \) is

$$\begin{aligned} l (\rho )&= \log \; k + T \sum _{i=1}^N \log \; (1-\rho \omega _i) \\&- \frac{ NT }{2} \log \; [\mathbf{y}'\mathbf{P}\mathbf{y} - \rho \mathbf{y}'\mathbf{P}(\mathbf{I}_T\otimes \mathbf{W})\mathbf{y} - \rho \mathbf{y}'(\mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}\mathbf{y}\\&+\rho ^2 \mathbf{y}'(\mathbf{I}_T \otimes \mathbf{W}')\mathbf{P}(\mathbf{I}_T \otimes \mathbf{W})\mathbf{y} ] \end{aligned}$$

So \(\rho \) can be estimated by an iterative Newton-Raphson process as

$$\begin{aligned} \rho _{j+1}=\rho _j - \frac{ l (\rho ) }{ l '(\rho ) } \end{aligned}$$
(17)

where

$$\begin{aligned} l '(\rho )&= \frac{\partial l (\rho ) }{ \partial \rho }=-\mathbf{y}'\mathbf{P}(\mathbf{I}_T\otimes \mathbf{W})\mathbf{y} - \mathbf{y}'(\mathbf{I}_T\otimes \mathbf{W}') \mathbf{P} \mathbf{y} \\&+2\rho \mathbf{y}'(\mathbf{I}_T\otimes \mathbf{W}')\mathbf{P}(\mathbf{I}_T \otimes \mathbf{W})\mathbf{y} - T\sum _{i=1}^N \frac{\omega _i}{1-\rho \omega _i} \end{aligned}$$

If it is desirable to estimate the model with two fixed effects, then the matrix \(\mathbf{Q}\) is replaced by

$$\begin{aligned} \mathbf{Q}=\mathbf{I}_N\otimes \mathbf{I}_T - \frac{1}{T}\mathbf{j}_T \mathbf{j}_T' \otimes \mathbf{I}_N - \frac{1}{N} \mathbf{I}_N\otimes \mathbf{j}_N \mathbf{j}_N' + \frac{1}{ NT }\mathbf{j}_{ NT } \mathbf{j}_{ NT }' \end{aligned}$$

and the estimation procedure is the same as of the one-way fixed effect.

1.2 Properties of the MESPS maximum likelihood estimators

Let the likelihood of the model \(\mathbf{Sy}=\mathbf{X}\varvec{\beta }+\varvec{\epsilon }\) be

$$\begin{aligned} L (\mathbf{y},\varvec{\theta })&= (2\pi )^{-\frac{ NT }{2}}(\gamma )^{-\frac{ NT }{2}}|\mathbf{S}|\hbox {exp}\left\{ -\frac{1}{2\gamma } (\mathbf{Sy}-\mathbf{X}\varvec{\beta })'(\mathbf{Sy}-\mathbf{X}\varvec{\beta })\right\} \\ l (\mathbf{y},\varvec{\theta })&= -\frac{ NT }{2}\log (2\pi ) -\frac{ NT }{2}\log \; \gamma -\frac{1}{2\gamma } (\mathbf{Sy}-\mathbf{X}\varvec{\beta })'(\mathbf{Sy}-\mathbf{X}\varvec{\beta }) \end{aligned}$$

once \(|\mathbf{S}|=1\) and \(\varvec{\theta }=(\varvec{\beta }, \gamma ,\alpha )\).

Let, for instance, \(H(\varvec{\theta })=- l (\mathbf{y},\varvec{\theta })\) and \(G(\varvec{\theta })=\frac{\partial }{\partial \varvec{\theta }} H(\varvec{\theta })\). In a first-order Taylor series context, it is reasonable to write

$$\begin{aligned} G(\varvec{\theta })=G(\varvec{\theta }_0 )+\frac{\partial }{\partial \varvec{\theta }}G(\varvec{\theta }_0)(\varvec{\theta }-\varvec{\theta }_0)+ o \end{aligned}$$

Evaluating \(\varvec{\theta }\) at \(\hat{\varvec{\theta }}_{ML}\) and if \( o \) is a neglectable error, then \(G(\hat{\varvec{\theta }}_{ML})=G(\varvec{\theta }_0 )+\frac{\partial }{\partial \varvec{\theta }}G(\varvec{\theta }_0)(\hat{\varvec{\theta }}_{ML} -\varvec{\theta }_0) \).

Notice that \(G(\hat{\varvec{\theta }}_{ML})=0\) because that is the optimality first condition.

Rewriting \(G(\hat{\varvec{\theta }}_{ML})=G(\varvec{\theta }_0 )+\frac{\partial }{\partial \varvec{\theta }}G(\varvec{\theta }_0)(\hat{\varvec{\theta }}_{ML} -\varvec{\theta }_0) \), we have

$$\begin{aligned} -G(\varvec{\theta }_0)&= \frac{\partial }{\partial \varvec{\theta }} (\hat{\varvec{\theta }}_{ML}-\varvec{\theta }_0 ) \\ \hat{\varvec{\theta }}_{ML}-\varvec{\theta }_0&= \left\{ - \frac{\partial ^2}{\partial \varvec{\theta } \partial \varvec{\theta }'} l (\mathbf{y},\varvec{\theta })\right\} ^{-1}G(\varvec{\theta }_0) \end{aligned}$$

And \( I (\varvec{\theta })=\left( - \frac{\partial ^2}{\partial \varvec{\theta } \partial \varvec{\theta }'} l (\mathbf{y},\varvec{\theta })\right) ^{-1}\) is the Fisher information matrix. Rearranging,

$$\begin{aligned} \hat{\varvec{\theta }}_{MV} - \varvec{\theta }_0=[n I (\varvec{\theta })]^{-1}\frac{\partial }{\partial \varvec{\theta }}[- l (\mathbf{y},\varvec{\theta })] \\ \end{aligned}$$

Notice that \( l (\mathbf{y},\varvec{\theta })=\sum _{i=1}^{ NT } \log \; f(y_i)\) and \(E \left[ \frac{\partial }{\partial \varvec{\theta }}\log \;f(y_i) \right] =0\) because

$$\begin{aligned} E \left[ \frac{\partial }{\partial \varvec{\theta }} l (\varvec{\theta }) \right]&= \frac{\partial }{\partial \varvec{\theta }} \sum _{i=1}^{ NT }\int _{-\infty }^{\infty } l (y_i,\varvec{\theta })f(y_i, \varvec{\theta })\mathrm{d}y_i=\sum _{i=1}^{ NT }\int _{-\infty }^{\infty } \frac{\partial }{\partial \varvec{\theta }} l (y_i,\varvec{\theta })f(y_i,\varvec{\theta })\mathrm{d}y_i\\&= \sum _{i=1}^{ NT }\int _{-\infty }^{\infty } \frac{f'(y_i,\varvec{\theta })}{f(y_i,\varvec{\theta })} f(y_i,\varvec{\theta })\mathrm{d}y_i= \sum _{i=1}^{ NT }\int _{-\infty }^{\infty } f'(y_i,\varvec{\theta }) \mathrm{d}y_i \\&= \sum _{i=1}^{ NT } \frac{\partial }{\partial \varvec{\theta }}\int _{-\infty }^{\infty } f(y_i,\varvec{\theta })\mathrm{d}y_i=\sum _{i=1}^{ NT } \frac{\partial }{\partial \varvec{\theta }} 1=0 \end{aligned}$$

and

$$\begin{aligned} \hbox {Var}[- l (\mathbf{y},\varvec{\theta })]=n I (\varvec{\theta }) \end{aligned}$$

The Central Limit Theorem may be used in the sense that

$$\begin{aligned} \sum _{i=1}^{ NT } \frac{\partial }{ \partial \varvec{\theta } } \log \; f(y_i) \rightarrow N(0,n I (\varvec{\theta })) \end{aligned}$$
$$\begin{aligned} E(\hat{\varvec{\theta }}_{ML}-\varvec{\theta })&\rightarrow [n I (\varvec{\theta })]^{-1}E \left[ - \frac{\partial }{\partial \varvec{\theta }} l (\mathbf{y}) \right] =\mathbf{0} \\ \hbox {Var}(\hat{\varvec{\theta }}_{ML}-\varvec{\theta })&\rightarrow [n I (\varvec{\theta })]^{-1}\hbox {Var} \left[ - \frac{\partial }{\partial \varvec{\theta }} l (\mathbf{y}) \right] [n I (\varvec{\theta })]^{-1} \\&\rightarrow [n I (\varvec{\theta })]^{-1}n I (\varvec{\theta }) [n I (\varvec{\theta })]^{-1}\\&\rightarrow [n I (\varvec{\theta })]^{-1}\\&\sqrt{n}(\hat{\varvec{\theta }}-\varvec{\theta })\rightarrow N(\mathbf{0}, I (\varvec{\theta })^{-1} ) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, C., da Silva, A.R. A matrix exponential spatial specification approach to panel data models. Empir Econ 49, 115–129 (2015). https://doi.org/10.1007/s00181-014-0862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-014-0862-2

Keywords

Navigation