Skip to main content
Log in

Threshold variable selection of asymmetric stochastic volatility models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A threshold stochastic volatility (SV) model is used for capturing time-varying volatilities and nonlinearity. Two adaptive Markov chain Monte Carlo (MCMC) methods of model selection are designed for the selection of threshold variables for this family of SV models. The first method is the direct estimation which approximates the model posterior probabilities of competing models. Using parallel MCMC sampling to estimate these probabilities, the best threshold variable is selected with the highest posterior model probability. The second method is to use the deviance information criterion to compare among these competing models and select the best one. Simulation results lead us to conclude that for large samples the posterior model probability approximation method can give an accurate approximation of the posterior probability in Bayesian model selection. The method delivers a powerful and sharp model selection tool. An empirical study of five Asian stock markets provides strong support for the threshold variable which is formulated as a weighted average of important variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asai M, McAleer M (2005) Dynamic asymmetric leverage in stochastic volatility models. Econom Rev 24:317–332

    Article  MathSciNet  MATH  Google Scholar 

  • Berg A, Meyer R, Yu J (2004) Deviance information criterion for comparing stochastic volatility models. J Bus Econ Stat 22:107–120

    Article  MathSciNet  Google Scholar 

  • Chen R (1995) Threshold variable selection in open-loop threshold autoregressive models. J Time Ser Anal 16:461–481

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, So MKP (2006) On a threshold heteroscedastic model. Int J Forecast 22:73–89

    Article  MATH  Google Scholar 

  • Chen CWS, Gerlach RH, So MKP (2006) Comparison of nonnested asymmetric heteroscedastic models. Comput Stat Data Anal (Special issue on Nonlinear Modelling and Financial Econometrics) 51:2164–2178

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, Gerlach R, So MKP (2008a) Bayesian model selection for heteroskedastic models. Adv Econ (Special Issue Bayesian Econom) 23:567–594

    Google Scholar 

  • Chen CWS, Liu FC, So MKP (2008b) Heavy-tailed distributed threshold stochastic volatility models in financial time series. Aust NZ J Stat 50:29–51

    Article  MathSciNet  Google Scholar 

  • Chen CWS, Gerlach R, Lin AMH (2010) Falling and explosive, dormant, and rising markets via multiple-regime financial time series models. Appl Stochast Models Bus Ind 26:28–49

    Article  MathSciNet  MATH  Google Scholar 

  • Chen CWS, Gerlach R, Lin EMH, Lee WCW (2012) Bayesian forecasting for financial risk management, pre and post the global financial crisis. J Forecast. doi:10.1002/for.1237

  • Chib S (1995) Marginal likelihood from the Gibbs output. J Am Stat Assoc 90:1313–1321

    Article  MathSciNet  MATH  Google Scholar 

  • Chib S, Jeliazkov I (2001) Marginal likelihood from the Metropolis–Hastings output. J Am Stat Assoc 96:270–281

    Article  MathSciNet  MATH  Google Scholar 

  • Congdon P (2006) Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Comput Stat Data Anal 50:346–357

    Article  MathSciNet  MATH  Google Scholar 

  • Congdon P (2007) Model weights for model choice and averaging. Stat Methodol 4:143–157

    Article  MathSciNet  MATH  Google Scholar 

  • Franses PH, van Dijk D (2000) Nonlinear time series models in empirical finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hamilton JD, Susmel R (1994) Autoregressive conditional heteroskedasticity and changes in regime. J Econom 64:307–333

    Google Scholar 

  • Harvey AC, Shephard N (1996) Estimation of an asymmetric stochastic volatility model for asset returns. J Bus Econ Stat 14:429–434

    Google Scholar 

  • Ip WC, Wong H, Li Y, Xie Z (1999) Threshold variable selection by wavelets in open-loop threshold autoregressive models. Stat Probab Lett 42:375–392

    Article  MathSciNet  MATH  Google Scholar 

  • Jacquier E, Polson NG, Rossi PE (1994) Bayesian analysis of stochastic volatility models. J Bus Econ Stat 12:69–87

    MathSciNet  Google Scholar 

  • Jacquier E, Polson NG, Rossi PE (2004) Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J Econom 122:185–212

    Article  MathSciNet  Google Scholar 

  • Kim S, Shephard N, Chib S (1998) Stochastic volatility: likelihood inference and comparison with ARCH models. Rev Econ Stud 65:361–393

    Article  MATH  Google Scholar 

  • Omori Y, Watanabe T (2008) Block sampler and posterior mode estimation for asymmetric stochastic volatility models. Comput Stat Data Anal 52:2892–2910

    Article  MathSciNet  MATH  Google Scholar 

  • Robert C, Marin JM (2008) On some difficulties with a posterior probability approximation technique. Bayesian Anal J 2:427–448. doi:10.1214/08-BA316

    Article  MathSciNet  Google Scholar 

  • Scott S (2002) Bayesian methods for hidden Markov models: recursive computing in the 21st century. J Am Stat Assoc 97:337–351

    Google Scholar 

  • Shephard N (1993) Fitting nonlinear time-series models with applications to stochastic variance models. J Appl Econom 8:135–152

    Google Scholar 

  • So MKP, Lam K, Li WK (1998) A stochastic volatility model with Markov switching. J Bus Econ Stat 16:244–253

    MathSciNet  Google Scholar 

  • So MKP, Li WK, Lam K (2002) A threshold stochastic volatility model. J Forecast 21:473–500

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B 64:583–639

    Article  MATH  Google Scholar 

  • Taylor SJ (1982) Financial returns modelled by the product of two stochastic processes, a study of daily sugar prices 1961–1979. In: Anderson OD (ed) Time series analysis: theory and practice 1. North-Holland, Amsterdam, pp 203–226

    Google Scholar 

  • Tong H (1978) On a threshold model. In: Chen CH (ed) Pattern recognition and signal processing. Sijthoff & Noordhoff, Amsterdam

    Google Scholar 

  • Tong H (1990) Non-linear time series. A dynamical system approach. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical data (with discussion). J R Stat Soc Ser B 42:245–292

    MATH  Google Scholar 

  • Wu S, Chen R (2007) Threshold variable determination and threshold variable driven switching autoregressive models. Statistica Sinica 17:241–264

    MATH  Google Scholar 

  • Xia Y, Li WK, Tong H (2007) Threshold variable selection using nonparametric methods. Statistica Sinica 17:265–287

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the editor and two anonymous referees for their insightful and helpful comments, which improved this paper. Cathy Chen is supported by the grants (NSC 99-2118-M-035-001-MY2 and NSC 101-2118-M-035-006-MY2) from the National Science Council (NSC) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy W. S. Chen.

Appendix

Appendix

By Bayesian inference, the posterior conditional distributions of all parameters can be conducted as follows:

  1. 1.

    \({\varvec{\phi }} \mid {\varvec{\theta }}_{-{\varvec{\phi }}}, {\varvec{R}}, {\varvec{X}}_1, {\varvec{H}}_n, {\varvec{\lambda }}_n \sim {\varvec{N}} \left( {\varvec{\mu }}_{{\varvec{\phi }}}, {\varvec{\Sigma }}_{{\varvec{\phi }}} \right) \), where \({\varvec{\Sigma }}_{{\varvec{\phi }}} = ({\varvec{Y}}_1^{\prime } {\varvec{Y}}_1 +{\varvec{\Lambda }}_1^{-1})^{-1}\) and \({\varvec{\mu }}_{{\varvec{\phi }}} = {\varvec{\Sigma }}_{{\varvec{\phi }}} ({\varvec{Y}}_1^{\prime } {\varvec{K}}_1 + {\varvec{\Lambda }}_1^{-1} {\varvec{\mu }}_1)\). The hyper-parameters \({\varvec{\mu }}_1\) and \({\varvec{\Lambda }}_1\) are the mean and variance of prior distribution of \({\varvec{\phi }}\). The matrices \({\varvec{K}}_1\) and \({\varvec{Y}}_1\) are

    $$\begin{aligned} {\varvec{K}}_1 \!=\! \left[ \begin{array}{c} c_{d+1}R_{d+1} \\ \vdots \\ c_{t}R_{t} \\ \vdots \\ c_{n}R_n \end{array} \right] \, \text{ and } \, {\varvec{Y}}_1 \!=\! \left[ \begin{array}{ccccccc} c_{d+1} &{} c_{d+1} s_{d+1} &{} c_{d+1} R_d &{} c_{d+1} s_{d+1} R_d &{} c_{d+1} x_d &{} c_{d+1} s_{d+1} x_d \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ c_t &{} c_t s_t &{} c_t R_{t-1} &{} c_t s_t R_{t-1} &{} c_t x_{t-1} &{} c_t s_t x_{t-1} \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ c_n &{} c_n s_n &{} c_n R_{n-1} &{} c_n s_n R_{n-1} &{} c_n x_{n-1} &{} c_n s_n x_{n-1} \\ \end{array} \right] , \end{aligned}$$

    where \(c_t=\sqrt{\frac{\nu }{(\nu -2)} \frac{\lambda _{t}}{\sigma ^2_{t}}}\).

  2. 2.

    \({\varvec{\alpha }} \mid {\varvec{\theta }}_{-{\varvec{\alpha }}}, {\varvec{R}}, {\varvec{X}}_1, {\varvec{H}}_n, {\varvec{\lambda }}_n \sim {\varvec{N}} \left( {\varvec{\mu }}_{{\varvec{\alpha }}}, {\varvec{\Sigma }}_{{\varvec{\alpha }}} \right) I_{(|\alpha _1|<1)} I_{(|\alpha _1+\beta _1|<1)}\), where \({\varvec{\Sigma }}_{{\varvec{\alpha }}} = ({\varvec{Y}}_2^{\prime } {\varvec{Y}}_2 + {\varvec{\Lambda }}_2^{-1})^{-1}\) and \({\varvec{\mu }}_{{\varvec{\alpha }}} = {\varvec{\Sigma }}_{{\varvec{\alpha }}} ({\varvec{Y}}_2^{\prime } {\varvec{K}}_2 + {\varvec{\Lambda }}_2^{-1} {\varvec{\mu }}_2)\). The hyper-parameters \({\varvec{\mu }}_2\) and \({\varvec{\Lambda }}_2\) are the mean and variance of prior distribution of \({\varvec{\alpha }}\). The matrices \({\varvec{K}}_2\) and \({\varvec{Y}}_2\) are

    $$\begin{aligned} {\varvec{K}}_2 = \left[ \begin{array}{c} h_{d+1} \\ \vdots \\ h_n \end{array} \right] \quad \text{ and } \quad {\varvec{Y}}_2 = \frac{1}{\sqrt{\sigma ^2}} \left[ \begin{array}{cccc} 1 &{} s_{d+1} &{} h_d &{} s_{d+1}h_d \\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ 1 &{} s_n &{} h_{n-1} &{} s_n h_{n-1} \end{array} \right] . \nonumber \end{aligned}$$
  3. 3.

    \(f\left( r \mid {\varvec{\theta }}_{-r}, {\varvec{R}}, {\varvec{X}}_1, {\varvec{H}}_n, {\varvec{\lambda }}_n \right) \propto L\left( {\varvec{R}} \mid {\varvec{X}}_1, {\varvec{\theta }}, {\varvec{H}}_n, {\varvec{\lambda }}_n \right) I_{(l \le r \le u)}\).

  4. 4.

    \(Pr\left( d=j| {\varvec{\theta }}_{-d}, {\varvec{R}}, {\varvec{X}}_1, {\varvec{H}}_n, {\varvec{\lambda }}_n \right) = \frac{ L\left( {\varvec{R}}| {\varvec{X}}_1, {\varvec{H}}_n, {\varvec{\lambda }}_n, {\varvec{\theta }}_{-d}, d=j \right) \pi (d=j)}{\sum _{k=1}^{d_0} L\left( {\varvec{R}}| {\varvec{X}}_1, {\varvec{H}}_n, {\varvec{\lambda }}_n, {\varvec{\theta }}_{-d}, d=k \right) \pi (d=k)}\).

  5. 5.

    \(f\left( \nu \mid {\varvec{\theta }}_{-\nu }, {\varvec{R}}, {\varvec{X}}_1, {\varvec{H}}_n \right) \propto \prod _{t = d_0 + 1}^n \frac{\Gamma (\frac{\nu +1}{2})}{\Gamma (\frac{\nu }{2})\sqrt{(\nu -2)\pi }}\frac{1}{\sqrt{\sigma ^2_t}} \left( 1+\frac{a_{t}^{2}}{(\nu -2) \sigma ^2_t } \right) ^{- \frac{\nu + 1}{2}} \pi (\nu )\).

  6. 6.

    \(\lambda _t \mid {\varvec{\theta }}, {\varvec{R}}, {\varvec{X}}_1, {\varvec{H}}_n \sim Gamma\left( \frac{\nu +1}{2},\frac{\nu }{2}+\frac{\nu a_t^{2}}{2(\nu -2)\sigma ^2_t} \right) \).

  7. 7.

    \(f\left( \omega _1 | {\varvec{\theta }}_{-{\varvec{\omega }}}, {\varvec{R}}, {\varvec{X}}_1, {\varvec{H}}_n, {\varvec{\lambda }}_n \right) \propto L({\varvec{R}} | {\varvec{X}}_1, {\varvec{H}}_n, {\varvec{\lambda }}_n, {\varvec{\theta }}) \pi (\omega _1)\).

  8. 8.

    \(f\left( \sigma ^2 \mid {\varvec{\theta }}_{-\sigma ^2}, {\varvec{R}}, {\varvec{X}}_1 \right) \propto f\left( {\varvec{R}} \mid {\varvec{X}}_1, {\varvec{\theta }} \right) I_{(0 \le \sigma ^2 \le b)}\).

  9. 9.

    \( h_t \mid h_{t+1}, {\varvec{\theta }}, {\varvec{\rho }}_n, {\varvec{R}}, {\varvec{X}}_1, {\varvec{\lambda }}_n \sim N\left( \mu ^*, \Sigma ^* \right) \), where \(\mu ^*\) and \(\Sigma ^*\) are computed by Kalman filtering algorithm. It is based on a approximated Gaussian state space model, the approximation of Gaussian distribution is suggested by Kim et al. (1998) with introducing a vector of mixing indicator \({\varvec{\rho }}_n\) for the mixture of normals. For more details, refer to Chen et al. (2008b).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.W.S., Liu, FC. & So, M.K.P. Threshold variable selection of asymmetric stochastic volatility models. Comput Stat 28, 2415–2447 (2013). https://doi.org/10.1007/s00180-013-0412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0412-y

Keywords

Navigation