Skip to main content

Advertisement

Log in

Obtaining of combined titanium-steel structures by electron beam freeform fabrication using niobium and copper interlayers

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The work is devoted to the study of bimetallic structures “titanium-steel” by electron beam freeform fabrication with the use of niobium and copper interlayers. A metallographic study of the deposited interlayers is carried out. The hardness distribution over the samples is shown. Technological issues according to deposition of niobium on titanium and steel on copper are pointed out. Tensile testing results reveal that the obtained structures have an ultimate tensile strength of 150–228 MPa and the fracture is located at the niobium-copper alloy side or at the niobium interlayer. The need to reduce the titanium content in niobium due to the occurrence of intergranular penetration of copper is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Malis K, Ramawath N, Madhukar S, Harish K (2020) Review on different welding techniques of Titanium and its alloys. Int J Sci Eng Res 7:2394–4099. https://doi.org/10.32628/IJSRSET207150

    Article  Google Scholar 

  2. Tomashchuk I, Sallamand P, Andrzejewski H, Grevey D (2011) The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316L electron beam and Nd:YAG laser joints. Intermetallics 19:1466–1473. https://doi.org/10.1016/j.intermet.2011.05.016

    Article  Google Scholar 

  3. Zhao H (2022) The microstructure and property of a titanium-carbon steel clad plate prepared using explosive welding. Metals 12:129. https://doi.org/10.3390/met12010129

    Article  Google Scholar 

  4. Cui Y, Liu D, Zhang Y, Deng G, Fan M, Chen D, Sun L, Zhang Z (2020) The microstructure and mechanical properties of TA1-low alloy steel composite plate manufactured by explosive welding. Metals 10:663. https://doi.org/10.3390/met10050663

    Article  Google Scholar 

  5. Ghosh M, Chatterjee S, Mishra B (2003) The effect of intermetallics on the strength properties of diffusion bonds formed between Ti–5.5Al–2.4V and 304 stainless steel. Mater Sci Eng A 363:268–274. https://doi.org/10.1016/S0921-5093(03)00649-X

    Article  Google Scholar 

  6. Lavrishchev AV, Prokopev SV, Tynchenko VS, Myrugin AV, Kukartsev VV, Bashmur KA, Sergienko RB, Tynchenko VV, Lysyannikov AV (2021) Investigation of the solid-phase joint of VT-14 titanium alloy with 12KH18N10T stainless steel obtained by diffusion welding through intermediate layers. Metals 11:1325. https://doi.org/10.3390/met11081325

    Article  Google Scholar 

  7. Malahov Yu M (2019) Explosive cladding of long cylindrical products with functional coatings. Doctoral dissertation, Chernogolovka

  8. Ramirez J (2014) Mechanical behavior of titanium-clad steel welded joints. Welding J 93:369–378

    Google Scholar 

  9. Ramirez J (2014) Characterization of CSC-GMAW titanium rich weld overlays. Welding J 93:338–350

    Google Scholar 

  10. Zhang Y, Sun D, Gu X, Duan Z, Li H (2018) Nd:YAG pulsed laser welding of TC4 Ti alloy to 301L stainless steel using Ta/V/Fe composite interlayer. Mater Lett 212:54–57. https://doi.org/10.1016/j.matlet.2017.10.057

    Article  Google Scholar 

  11. Adomako NK, Kim JO, Lee SH, Noh K-H, Kim JH (2018) Dissimilar welding between Ti–6Al–4V and 17–4PH stainless steel using a vanadium interlayer. Mater Sci Eng A 732:378–397. https://doi.org/10.1016/j.msea.2018.07.015

    Article  Google Scholar 

  12. Sikka SK, Vohra YK (1982) R Chidambaram omega phase in materials. Prog Mater Sci 27:245–310

    Article  Google Scholar 

  13. Ng H, Devaraj A, Nag S, Bettles C, Gibson M, Fraser H, Muddle B, Banerjee R (2011) Phase separation and formation of omega phase in the beta matrix of a Ti–V–Cu alloy. Acta Mater 59:2981–2991. https://doi.org/10.1016/J.ACTAMAT.2011.01.038

    Article  Google Scholar 

  14. Ghosh C, Basu J, Ramachandran D, Mohandas E (2016) Phase separation and x transformation in binary V-Ti and ternary V–Ti–Cr alloys. Acta Mater 121:310–324

    Article  Google Scholar 

  15. Wiegand M, Marks L, Sommer N, Böhm S (2023) Dissimilar micro beam welding of titanium to Nitinol and stainless steel using biocompatible filler materials for medical applications. Weld World 67:77–88. https://doi.org/10.1007/s40194-022-01412-3

    Article  Google Scholar 

  16. Jawad M, Jahanzaib M, Ilyas M (2022) Evaluation of welded joints of dissimilar titanium alloy Ti-5Al-2.5Sn and stainless-steel 304 at different multi-interlayer modes. Mater Res Express 9:1–25. https://doi.org/10.1088/2053-1591/ac9600

    Article  Google Scholar 

  17. Zhang Y, Zhou J, Sun D, Li H (2020) Three-pass laser welding of Ti alloy-stainless steel using Nb and Ni interlayers. J Mater Res Technol 9(2):1780–1784. https://doi.org/10.1016/j.jmrt.2019.12.009

    Article  Google Scholar 

  18. Gao X-L, Liu J, Zhang L-J (2017) Effect of heat input on microstructure and mechanical properties of pulsed laser welded joints in Ti6Al4V/Nb dissimilar alloys. Int J Adv Manuf Technol 94:3937–3947

    Article  Google Scholar 

  19. Mannucci A, Tomashchuk I, Mathieu A, Bolot R, Cicala E, Lafaye S, Roudeix C (2020) Use of pure vanadium and niobium/copper inserts for laser welding of titanium to stainless steel. J Adv Joining Processes 1:100022. https://doi.org/10.1016/j.jajp.2020.100022

    Article  Google Scholar 

  20. Torkamany MJ, Ghaini FM, Poursalehi R (2014) Dissimilar pulsed Nd:YAG laser welding of pure niobium to Ti–6Al–4V. Mater Des 53:915–920. https://doi.org/10.1016/j.matdes.2013.07.094

    Article  Google Scholar 

  21. Li J, Liu Y, Gao Y, Jin P, Sun Q, Feng J (2020) Benefits of interfacial regulation with interlayers in laser welding Ti6Al4V/316L steel. Opt Laser Technol 125:106007. https://doi.org/10.1016/j.optlastec.2019.106007

    Article  Google Scholar 

  22. Mo D, Wang Y, Fang Y, Song T, Jiang X (2018) Influence of welding speed on the microstructure and mechanical properties of electron beam-welded joints of TC4 and 4J29 sheets using Cu/Nb multi-Interlayers. Metals 8(10):810. https://doi.org/10.3390/met8100810

    Article  Google Scholar 

  23. Fang Y, Jiang X, Song T, Mo D, Luo Z (2019) Pulsed laser welding of Ti-6Al-4V titanium alloy to AISI316L stainless steel using Cu/Nb bilayer. Mater Lett 244:163–1666. https://doi.org/10.1016/j.matlet.2019.02.075

    Article  Google Scholar 

  24. Grevey D, Vignal V, Bendaoud I, Erazmus-Vignal P, Tomashchuk I, Daloz D, Sallamand P (2015) Microstructural and micro-electrochemical study of a tantalum–titanium weld interface. Mater Des 87:974–985. https://doi.org/10.1016/j.matdes.2015.08.074

    Article  Google Scholar 

  25. Zhou X, Huang Y, Chen Y, Peng P (2018) Laser joining of Mo and Ta sheets with Ti6Al4V or Ni filler. Opt Laser Technol 106:487–494. https://doi.org/10.1016/j.optlastec.2018.05.004

    Article  Google Scholar 

  26. Ma YZ, Cai QS, Liu WS, Liu SH (2014) Microstructure and mechanical properties of brazed tungsten/steel joint for divertor applications. Mater Sci Forum 789:384–390

    Article  Google Scholar 

  27. Shehbaz T, Khan FN, Junaid M, Haider J (2021) Investigating nanoindentation creep behavior of pulsed-TIG welded Inconel 718 and commercially pure titanium using a vanadium interlayer. Metals 11:1492. https://doi.org/10.3390/met11091492

    Article  Google Scholar 

  28. Adomako NK, Kim JO, Kim JH (2019) Microstructural evolution and mechanical properties of laser beam welded joints between pure V and 17–4PH stainless steel. Mater Sci Eng A 753:208–217. https://doi.org/10.1016/j.msea.2019.03.036

    Article  Google Scholar 

  29. Baghjari SH, Ghaini FM, Shahverdi HR, Mapelli C, Barella S, Ripamonti D (2016) Laser welding of niobium to 410 steel with a nickel interlayer produced by electro spark deposition. Mater Des 107:108–116. https://doi.org/10.1016/j.matdes.2016.06.022

    Article  Google Scholar 

  30. Shehbaz T, Khan F, Junaid M, Haider J (2022) Investigating the bonding mechanism of P-TIG welded CpTi/Inconel 718 dissimilar joint with Nb interlayer. Mater Lett 313:131748. https://doi.org/10.1016/j.matlet.2022.131748

    Article  Google Scholar 

  31. Gao X-L, Liu J, Zhang L (2018) Dissimilar metal welding of Ti6Al4V and Inconel 718 through pulsed laser welding-induced eutectic reaction technology. Int J Adv Manuf Technol 96:1061–1071. https://doi.org/10.1007/s00170-018-1633-6

    Article  Google Scholar 

  32. Liu WS, Qingshan C, Ma YZ, Wang YY, Liu HY, Li DX (2013) Microstructure and mechanical properties of diffusion bonded W/steel joint using V/Ni composite interlayer. Mater Charact 86:212–220. https://doi.org/10.1016/j.matchar.2013.10.013

    Article  Google Scholar 

  33. Chu Q, Zhang M, Li J, Yan C, Qin Z (2017) Influence of vanadium filler on the properties of titanium and steel TIG welded joints. J Mater Process Technol 240:293–304. https://doi.org/10.1016/j.jmatprotec.2016.06.018

    Article  Google Scholar 

  34. Zhang Y, Sun D, Gu X, Li H (2017) Microstructure and mechanical property improvement of dissimilar metal joints for TC4 Ti alloy to 301L stainless steel. J Mater Sci 53(4):2942–2955. https://doi.org/10.1007/s10853-017-1708-z

    Article  Google Scholar 

  35. Baker H (1992) ASM handbook. Volume 3 alloy phase diagrams. ASM International, Materials Park, Ohio

  36. Terentyev EV, Zhgut DA, Gudenko AV, Marchenkov AY, Borodavkina KT, Kozyrev KM (2023) Influence of the scale effect on the constraint effect in welded joints with soft interlayers. Int J Adv Manuf Technol 126(5–6):2357–2368. https://doi.org/10.21203/rs.3.rs-2380847/v1

    Article  Google Scholar 

  37. Terentev EV, Marchenkov AY, Goncharov AL, Sliva AP (2019) Application of local strengthening for increasing the strength of the welded joint of EP517 steel and 36NKhTYu alloy. Russ Metall 10:1085–1090. https://doi.org/10.1134/S0036029519100288

    Article  Google Scholar 

  38. Hochhauser F, Ernst W, Rauch R, Vallant R, Enzinger N (2012) Influence of the soft zone on the strength of welded modern HSLA steels. Weld World 56:77–85. https://doi.org/10.1007/BF03321352

    Article  Google Scholar 

  39. Ostsemin AA, Shmatkov AS (2014) Strength of welded jointswith an asymmetric mechanical heterogeneity under staticloading. Weld Int 28(11):890–895. https://doi.org/10.1080/09507116.2013.868107

    Article  Google Scholar 

  40. Song T, Zhang J, Yang T, Mo D, Jiang X (2019) Effects of electron-beam offsetting on microstructure and mechanical properties of joints between titanium alloy and stainless steel using Cu/Nb bilayer. Mater Res Express 6(9). https://doi.org/10.1088/2053-1591/ab331f

Download references

Funding

The research was carried out with the financial support of the Russian Science Foundation (project no. 22–79-10338).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Egor V. Terentyev or Khariton M. Kozyrev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terentyev, E.V., Kozyrev, K.M., Borodavkina, K.T. et al. Obtaining of combined titanium-steel structures by electron beam freeform fabrication using niobium and copper interlayers. Int J Adv Manuf Technol 132, 3519–3533 (2024). https://doi.org/10.1007/s00170-024-13556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13556-1

Keywords

Navigation