Skip to main content
Log in

Modeling nonisothermal laser amorphization: a multicomponent alloy perspective

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The processes of melt crystallization and conductive heat transfer during selective laser melting of a metal alloy are considered in a conjugate formulation. A mathematical model is proposed for describing the inhomogeneous temperature field for calculating the fraction of the crystalline phase during laser treatment of the surface of a metal alloy. A numerical study of laser amorphization of bulk metallic glass (BMG) by melting the surface of samples of finite dimensions has been carried out. A comparison with the known experimental data is carried out, and a qualitative agreement is obtained for the calculations on the depth of the melt pool, the homogeneity of the amorphous layer, and its location for a multicomponent alloy based on zirconium: \({Zr}_{57}{Cu}_{\mathrm{15,4}}{Ni}_{\mathrm{12,6}}{Al}_{10}{Nb}_{5}\). Potentially suitable laser scanning regimes are identified, in which the fraction of the crystalline phase in the treated layer does not increase compared to the initial one in the initial amorphous-crystalline alloy. It was found that when using the calculated modes of laser scanning, it is possible to reduce the fraction of the crystalline phase in the treated surface layer of the BMG alloy by orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Klement W Jr, Willens RH, Duwez P (1960) Non-crystalline structure in solidified gold-silicon alloys. Nature 187:869–870

    Article  ADS  CAS  Google Scholar 

  2. Suryanarayana C, Inoue A (2012) . Metallic Glasses. 2012 Wiley-VCH Verlag GmbH & Co KGaA, Weinheim. https://doi.org/10.1002/14356007.a16_335.pub2

    Article  Google Scholar 

  3. Davis LA (1978) Metallic Glasses. Gilman JJ, Leamy HJ (ed) (Metals Park, Ohio: American Society for Metals). p 190–223

  4. Schroers J (2010) Processing of bulk metallic glass. Adv Mater 22(14):1566–1597

    Article  CAS  PubMed  Google Scholar 

  5. Axinte E (2012) Metallic glasses from “alchemy” to pure science: present and future of design, processing and applications of glassy metals. Mater Des 35:518–556

    Article  CAS  Google Scholar 

  6. Hafner J (1980) Theory of the formation of metallic glasses. Phys Rev B 21(2):406–426

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Otsu M, Ide Y, Sakurai J, Hata S, Takashima K (2009) Laser forming of thin metallic glass. J Solid Mech Mater Eng 3(2):387–396

    Article  Google Scholar 

  8. Liu WD, Ye LM, Liu KX (2011) Micro-nano scale ripples on metallic glass induced by laser pulse. J Appl Phys 109(043109):1–5

    Google Scholar 

  9. Williams E, Lavery N (2017) Laser processing of bulk metallic glass: a review. J Mater Proc Tech 247:73–91

    Article  CAS  Google Scholar 

  10. Greer A (2015) New horizons for glass formation and stability. Nature Mater 14:542–546. https://doi.org/10.1038/nmat4292)

    Article  ADS  CAS  Google Scholar 

  11. Inoue A, Zhang T, Masumoto T (1990) Production of amorphous cylinder and sheet of La55 Al25 Ni20 alloy by a metallic mold casting method. Mater Trans, JIM 31(5):425–428

    Article  CAS  Google Scholar 

  12. Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J (2013) Processing metallic glasses by selective laser melting. Mater Today 16(1-2). https://doi.org/10.1016/j.mattod.2013.01.018

  13. Khmyrov RS, Podrabinnik PA, Tarasova TV, Gridnev MA, Korotkov AD, Grigoriev SN, Kurmysheva AYu, Kovalev OB, Gusarov AV (2023) Partial crystallization in a Zr-based bulk metallic glass in selective laser melting. Int J Adv Man Tech 126:5613–5631. https://doi.org/10.1007/s00170-023-11500-3

    Article  Google Scholar 

  14. Shadowspeaker L, Shah M, Busch R (2004) On the crystalline equilibrium phases of the Zr57Cu15,4Ni12,6Al10Nb5 bulk metallic glass forming alloy. Scripta Mater 50:1035–1038. https://doi.org/10.1016/j.scriptamat.2003.12.023

    Article  CAS  Google Scholar 

  15. Kolmogorov AN (1937) A statistical theory for the recrystallization of metals. Bull Acad Sci USSR, Ser Math 1(3):355–359

    Google Scholar 

  16. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth, transactions of the American Institute of Mining and Metallurgical Engineers 135:416–442

  17. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys 9(2):177–184

  18. Chen H (1978) A method for evaluating viscosities of metallic glasses from the rates of thermal transformations. J Non-Cryst Solids 27(2):257–263. https://doi.org/10.1016/0022-3093(78)90128-x

    Article  ADS  CAS  Google Scholar 

  19. Henderson DW (1979) Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids 30(3):301–315. https://doi.org/10.1016/0022-3093(79)90169-8

    Article  ADS  CAS  Google Scholar 

  20. Málek J (1995) The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta 267:61–73. https://doi.org/10.1016/0040-6031(95)02466-2

    Article  Google Scholar 

  21. Yang Z, Markl M, Körner C (2022) Predictive simulation of bulk metallic glass crystallization during laser powder bed fusion. Addit Manuf 59:103121. https://doi.org/10.1016/j.addma.2022.103121

    Article  CAS  Google Scholar 

  22. Nakamura K, Watanabe T, Katayama K, Amano T (1972) Some aspects of nonisothermal crystallization of polymers. I. relationship between crystallization temperature, crystallinity, and cooling conditions. J Appl Polym Sci 16(5):1077–1091. https://doi.org/10.1002/app.1972.070160503

    Article  CAS  Google Scholar 

  23. Nakamura K, Katayama K, Amano T (1973) Some aspects of nonisothermal crystallization of polymers. II. consideration of the isokinetic condition. J Appl Polym Sci 17(4):1031–1041. https://doi.org/10.1002/app.1973.070170404

    Article  CAS  Google Scholar 

  24. Liu H, Jiang Q, Huo J, Zhang Y, Yang W, Li X (2020) Crystallization in additive manufacturing of metallic glasses: a review. Addit Manuf 36:101568. https://doi.org/10.1016/j.addma.2020.101568

    Article  CAS  Google Scholar 

  25. Cherepanov AN, Popov VN, Solonenko OP (2008) Numerical analysis of the spreading and crystallization dynamics of the modified metal droplet on the substrate. Thermophys Aeromech 15(3):483–489

    Article  ADS  Google Scholar 

  26. Niziev VG, Mirzade FKH, Panchenko VYA, Khomenko MD, Grishae RV, Pityana S, Rooyen CV (2013) Numerical study to represent non-isothermal melt-crystallization kinetics at laser-powder cladding. Model Numer Simul Mater Sci 3:61–69. https://doi.org/10.4236/mnsms.2013.32008

    Article  CAS  Google Scholar 

  27. Gupta SC (2018) The classical Stefan problem: basic concepts, modelling and analysis with quasi-analytical solutions and methods. Elsevier

  28. Gridnev MA, Khmyrov RS, Gusarov AV (2023) Model of heat transfer and crystallization kinetics in the heat-affected zone in vit106 alloy in selective laser melting. High Temp Mater Process 27(3). https://doi.org/10.1615/HighTempMatProc.2023048119

  29. Cho JH, Farson DF, Milewski JO, Hollis KJ (2009) Weld pool flows during initial stages of keyhole formation in laser welding. J Phys D: Appl Phys 42(11pp):175502. https://doi.org/10.1088/0022-3727/42/17/175502

    Article  ADS  CAS  Google Scholar 

  30. Yanenko NN (1971) The method of fractional steps, the solution of problems of mathematical physics in several variables. Springer-Verlag, Berlin

    Google Scholar 

  31. Kuznetsov GV, Sheremet MA (2010) Numerical simulation of convective heat transfer modes in a rectangular area with a heat source and conducting walls. J Heat Transfer 132(8):081401. https://doi.org/10.1115/1.4001303

    Article  Google Scholar 

  32. Bacheeva AV, Khmyrov RS, Korotkov AD, Tarasova TV, Gusarov AV (2022) Amorphous-crystalline composite microstructure formation in Zr46Cu46Al8 alloy at the conditions of selective laser melting. Key Eng Mater Trans Tech Publications Ltd 910:959–965. https://doi.org/10.4028/p-1s59b9

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Grant Agreement No. 21–19–00295, https://rscf.ru/project/21-19-00295/).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: OBK, AVG. Investigation: OBK, DSI. Supervision: AVG. Funding acquisition: AVG. Writing—original draft: OBK. Writing—review and editing: OBK, AVG, DSI.

Corresponding author

Correspondence to Andrey V. Gusarov.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, O.B., Gusarov, A.V. & Ivanenko, D.S. Modeling nonisothermal laser amorphization: a multicomponent alloy perspective. Int J Adv Manuf Technol 130, 5795–5812 (2024). https://doi.org/10.1007/s00170-024-13025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13025-9

Keywords

Navigation