Skip to main content
Log in

Industrial IoT–enabled real-time prediction of strip cross-section shape for hot-rolling steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Because strip cross sections cannot be obtained during hot rolling in advance, traditional automatic shape control systems can only rely on the measured shape at the exit of the final mill for feedback control, which causes a significant lag and poor adjustment effect. To accurately predict the cross-sectional shape, an industrial Internet of things platform for steel plants is developed to collect real-time production data. A novel real-time prediction model that can determine the cross sections of strips is proposed to address the drawbacks of traditional data-driven methods that perform offline predictions. This model is established by adopting a dynamic mode decomposition algorithm (DMD) to optimize the sparse identification of nonlinear dynamics (SINDy). A practical dataset of 81 variables from a 2250-mm hot-rolling production line is utilized to validate the proposed method, and this method is compared with SINDy, EMD-optimized SINDy, and VMD-optimized SINDy. The experimental results show that the proposed method can achieve higher prediction accuracy and more minor errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data and material supporting the findings of this work are available within the article.

Code availability

Not applicable.

References

  1. He HN, Shao J, Wang XC, Yang Q, Liu Y, Xu D, Sun YZ (2021) Research and application of approximate rectangular section control technology in hot strip mills. J Iron Steel Res Int 28:279–290. https://doi.org/10.1007/s42243-021-00558-6

    Article  Google Scholar 

  2. Zhao JW, Li JD, Yang Q, Wang XC, Ding XX, Peng GZ, Shao J, Gu ZW (2023) A novel paradigm of flatness prediction and optimization for strip tandem cold rolling by cloud-edge collaboration. J Mater Process Tech 316:117947. https://doi.org/10.1016/j.jmatprotec.2023.117947

    Article  Google Scholar 

  3. Wu ZD, Yang Q, Wang XC, Xu D, Zhao JW, Li JD (2023) Preset model of bending force in 6-high universal crown tandem cold rolling mill based on symbolic regression. Ironmak Steelmak. https://doi.org/10.1080/03019233.2023.2218777

    Article  Google Scholar 

  4. He HN, Wang XC, Yang Q, Sun XJ, Xiao JL, Liu Y, Song GY (2018) Smart-shifting strategy of work rolls for downstream stands in hot rolling. Ironmak Steelmak 47(5):512–519. https://doi.org/10.1080/03019233.2018.1541656

    Article  Google Scholar 

  5. Kim W, Won D, Tomizuka M (2015) Flatness-based nonlinear control for position tracking of electrohydraulic systems. Ieee-Asme T Mech 20(1):197–206. https://doi.org/10.1109/TMECH.2014.2310498

    Article  Google Scholar 

  6. Zhao JW, Wang XC, Yang Q, Wang QN, Liu C, Song GY (2018) High precision shape model and presetting strategy for strip hot rolling. J Mater Process Tech 265:99–111. https://doi.org/10.1016/j.jmatprotec.2018.10.005

    Article  Google Scholar 

  7. Chen LZ, Sun WQ, He AR, Liu C, Qiang Y (2022) Study on quarter-wave generation mechanism in DP980 steel during cold rolling. Int J Adv Manuf Tech 120:313–327. https://doi.org/10.1007/s00170-021-08395-3

    Article  Google Scholar 

  8. Zhou GY, Li H, He AN, Liu C, Sun WQ, Liu ZQ, Han C (2022) Simulation and control of high-order flatness defect in rolling wide titanium strip with 20-high mill. Int J Adv Manuf Tech 120:5483–5496. https://doi.org/10.1007/s00170-022-09097-0

    Article  Google Scholar 

  9. Schausberger F, Steinboeck A, Kugi A (2018) Feedback control of the contour shape in heavy-plate hot rolling. Ieee T Contr Syst T 26(3):842–856. https://doi.org/10.1109/TCST.2017.2695168

    Article  Google Scholar 

  10. Prinz K, Steinboec A, Muller M, Ettl A, Schausberger F, Kugi A (2019) Online parameter estimation for adaptive feedforward control of the strip thickness in a hot strip rolling mill. J Manuf Sci E-T Asme 141(7). https://doi.org/10.1115/1.4043575

  11. Prinz K, Steinboec A, Kugi A (2018) Optimization-based feedforward control of the strip thickness profile in hot strip rolling. J Process Contr 64:100–111. https://doi.org/10.1016/j.jprocont.2018.02.001

    Article  Google Scholar 

  12. Sun J, Peng W, Ding JG, Li X, Zhang DH (2018) Key intelligent technology of steel strip production through process. Metals 8(8). https://doi.org/10.3390/met8080597

  13. Zhang SH, Deng L, Che LZ (2022) An integrated model of rolling force for extra-thick plate by combining theoretical model and neural network model. J Manuf Process 75:100–109. https://doi.org/10.1016/j.jmapro.2021.12.063

    Article  Google Scholar 

  14. Mukhopadhyay A, Iqbal A (2005) Prediction of mechanical properties of hot rolled, low-carbon steel strips using artificial neural network. Mater Manuf Process 20:793–812. https://doi.org/10.1081/AMP-200055140

    Article  Google Scholar 

  15. Bagheripoor M, Bisadi H (2013) Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process. Appl Math Model 37:4593–4607. https://doi.org/10.1016/j.apm.2012.09.070

    Article  Google Scholar 

  16. Li X, He YD, Ding JG, Luan F, Zhang DH (2022) Predicting hot-strip finish rolling thickness using stochastic configuration networks. Inform Sciences 611:677–689. https://doi.org/10.1016/j.ins.2022.07.173

    Article  Google Scholar 

  17. Li JD, Wang XC, Yang Q, Guo ZA, Song LB, Man X (2022) Rolling force prediction in cold rolling process based on combined method of T-S fuzzy neural network and analytical model. Int J Adv Manuf Tech 121(5–6):4087–4098. https://doi.org/10.1007/s00170-022-09567-5

    Article  Google Scholar 

  18. Wu ZD, Wang XC, Yang Q, Xu D, Zhao JW, Li JD, Yan SZ (2023) Deformation resistance prediction of tandem cold rolling based on grey wolf optimization and support vector regression. J Iron Steel Res Int. https://doi.org/10.1007/s42243-022-00894-1

    Article  Google Scholar 

  19. Peng GZ, Wang HW, Song X, Zhang HM (2017) Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models. Energy 132:269–279. https://doi.org/10.1016/j.energy.2017.05.067

    Article  Google Scholar 

  20. Xu YH, Wang DC, Liu HM, Duan BW, Yu HX (2022) Flatness defect recognition method of cold rolling strip with a new stacked generative adversarial network. Steel Res Int 93(11). https://doi.org/10.1002/srin.202200284

  21. Sun J, Shan PF, Wei Z, Hu YH, Wang QL, Peng W, Zhang DH (2020) Data-based flatness prediction and optimization in tandem cold rolling. J Iron Steel Res Int 28(5):563–573. https://doi.org/10.1007/s42243-020-00505-x

    Article  Google Scholar 

  22. Peng GZ, Sun YZ, Zhang Q, Yang Q, Shen WM (2022) A collaborative design platform for new alloy material development. Adv Eng Inform 51:101488. https://doi.org/10.1016/j.aei.2021.101488

    Article  Google Scholar 

  23. Wang XX, Yan XQ (2019) Dynamic model of the hot strip rolling mill vibration resulting from entry thickness deviation and its dynamic characteristics. Math Probl Eng. https://doi.org/10.1155/2019/5868740

    Article  MathSciNet  Google Scholar 

  24. Bagheripoor M, Bisadi H (2011) Effects of rolling parameters on temperature distribution in the hot rolling of aluminum strips. Appl Therm Eng 31:1556–1565. https://doi.org/10.1016/j.applthermaleng.2011.01.005

    Article  Google Scholar 

  25. Li GT, Gong DY, Lu X, Wang ZH, Zhang DH (2019) Design of a kind of backup roll contour used in four-high CVC hot strip mill. ISIJ Int 59(3):504–513. https://doi.org/10.2355/isijinternational.ISIJINT-2018-674

    Article  Google Scholar 

  26. Sun J, Hu YJ, Yin FC, Hu YH, Peng W, Zhang DH (2019) Looper-gauge integrated control in hot strip finishing mill using inverse linear quadratic theory. ISIJ Int 59(9):1562–1572. https://doi.org/10.2355/isijinternational.ISIJINT-2018-721

    Article  Google Scholar 

  27. Lu NY, Jiang B, Lu JH (2014) Data mining-based flatness pattern prediction for cold rolling process with varying operating condition. Knowl Inf Syst 41(2):355–378. https://doi.org/10.1007/s10115-013-0716-9

    Article  Google Scholar 

  28. Liu C, Yuan Y, H AR, Wang FJ, Sun WQ, Shao J, Liu HY, Miao RL, Zhou XG, Ma B (2023) Research on the cause and control method of edge warping defect during hot finishing rolling. Metals 13(3). https://doi.org/10.3390/met13030565

  29. Peng GZ, Cheng YL, Wang HW, Shen WM (2022) Industrial IoT-enabled prediction interval estimation of mechanical performances for hot-rolling steel. Ieee T Instrum Meas 71. https://doi.org/10.1109/TIM.2022.3154815

  30. Koopman BO (1931) Hamiltonian systems and transformations in Hilbert space. P Natl Acad Sci USA 17(5):315–318. https://doi.org/10.1073/pnas.17.5.315

    Article  Google Scholar 

  31. Wes Gurnee D (2023) Learning sparse nonlinear dynamics via mixed-integer optimization. Nonlinear Dynam. https://doi.org/10.1007/s11071-022-08178-9

    Article  Google Scholar 

  32. Mangan NM, Askham T, Brunton SL, Kutz JN, Proctor JL (2019) Model selection for hybrid dynamical systems via sparse regression. P Roy Soc A-Math Phy 475(2223). https://doi.org/10.1098/rspa.2018.0534

  33. Bruntona SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. P Natl Acad Sci USA 113(15):3932–3937. https://doi.org/10.1073/pnas.1517384113

    Article  MathSciNet  Google Scholar 

  34. Schmid PJ (2022) Dynamic mode decomposition and its variants. Annu Rev Fluid Mech 54:225–254. https://doi.org/10.1146/annurev-fluid-030121-015835

    Article  Google Scholar 

  35. Susuki Y, Mezic I (2011) Nonlinear Koopman modes and coherency identification of coupled swing dynamics. Ieee T Power Syst 26(4):1894–1904. https://doi.org/10.1109/TPWRS.2010.2103369

    Article  Google Scholar 

  36. Zhang SH, Deng L, Zhang QY, Li QH, Hou JX (2019) Modeling of rolling force of ultra-heavy plate considering the influence of deformation penetration coefficient. Int J Mech Sci 159:373–381. https://doi.org/10.1016/j.ijmecsci.2019.05.048

    Article  Google Scholar 

  37. Che LZ, Zhang SH, Tian WH, Li Y (2023) A new model for thermal-mechanical coupled of gradient temperature rolling force based on geometrical unified yield criterion. J Manuf Process 101:904–915. https://doi.org/10.1016/j.jmapro.2023.06.050

    Article  Google Scholar 

  38. Deng JF, Sun J, Peng W, Hu YH, Zhang DH (2019) Application of neural networks for predicting hot-rolled strip crown. Appl Soft Comput 78:119–131. https://doi.org/10.1016/j.asoc.2019.02.030

    Article  Google Scholar 

  39. Lei YG, Lin J, He ZJ, Zuo MJ (2013) A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech Syst Signal Pr 35:108–126. https://doi.org/10.1016/j.ymssp.2012.09.015

    Article  Google Scholar 

  40. Zheng Q, Yan P, Zareipour H, Chen NY (2019) A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Appl Energ 235:939–953. https://doi.org/10.1016/j.apenergy.2018.10.080

    Article  Google Scholar 

  41. Ji YF, Song LB, Sun J, Peng W, Li HY, Ma LF (2021) Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling. J Cent South Univ 28(8):2333–2344. https://doi.org/10.1007/s11771-021-4773-z

    Article  Google Scholar 

Download references

Funding

The work would like to thank the National Natural Science Foundation of China (Grant No. 51975043) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

YoS: conceptualization, writing—review and editing; JL: methodology, writing—original draft; HL: resources, software; YaS: formal analysis, conceptualization; XW: formal analysis, methodology; QY: project administration, supervision.

Corresponding author

Correspondence to Youzhao Sun.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

This work is approved by all authors for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Li, J., Li, H. et al. Industrial IoT–enabled real-time prediction of strip cross-section shape for hot-rolling steel. Int J Adv Manuf Technol 130, 961–972 (2024). https://doi.org/10.1007/s00170-023-12745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12745-8

Keywords

Navigation