Skip to main content
Log in

Time-varying thermoelastic coupling analysis of heat source of ball screw feed drive system

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The internal contact state of the ball screw nut pair will affect its heat source strength, and the heat source will further affect the contact state until a certain equilibrium is reached. At present, the research on the time-varying characteristics of the heat source in the ball screw nut pair has not obtained the interaction law between the structure and thermal effects. To solve this problem, this paper proposes a thermoelastic coupling analysis method for the time-varying characteristics of the heat source. A thermoelastic coupling model for the heat source is established, and a contact deformation analysis method based on the plane strain model is proposed. The variation law of the contact deformation between the ball and raceway under thermal influence is studied. An experimental verification method for the thermoelastic variation law of the heat source is designed to demonstrate the compensation principle of thermal deformation on elastic deformation. The results indicate that when considering thermal effects, the contact relationship between the ball and raceway undergoes four stages from the initial unloaded state to the final stable state, namely the unloaded stage, the working load stage, the thermal load stage, and the stable stage. The strength of the ball screw nut pair heat source shows an oscillating decrease. Under specific conditions, thermal deformation has a compensating effect on contact deformation. And the thermoelastic coupling effect of the ball screw nut pair will have an impact on the preheating time of the ball screw feed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Li TJ, Zhang YM, Su Y, Zhang K, Wang YB, Gao SZ (2021) Dynamic reliability of thermally deduced positioning precision of ball screw systems based on random moving difference method[J]. J Manuf Syst 61:171–182

    Article  Google Scholar 

  2. Li Y, Yu ML, Bai YM, Hou ZY, Wu WW (2021) A review of thermal error modeling methods for machine tools[J]. Appl Sci 11(11):5216

    Article  Google Scholar 

  3. Jedrzejewski J, Kowal Z, Kwasny W, Winiarski Z (2019) Ball screw unit precise modelling with dynamics of loads and moving heat sources taken into account[J]. J Mach Eng 19(4):27–41

    Article  Google Scholar 

  4. Ma C, Yang J, Mei XS, Zhao L, Shi H, Zhang DS (2017) Dynamic thermal-structure coupling analysis and experimental study on ball screw feed drive system of precision machine tools[J]. Appl Mech Mater 868(1):124–135

    Article  Google Scholar 

  5. Liu JL, Ma C, Wang SL, Wang SB, Yang B, Shi H (2019) Thermal-structure interaction characteristics of a high-speed spindle- bearing system [J]. Int J Mach Tools Manuf 137:42–57

    Article  Google Scholar 

  6. Zhang LX, Li CQ, Wu YH, Zhang K, Shi HT (2017) Hybrid prediction model of the temperature field of a motorized Spindle[J]. Appl Sci 7(10):1091

    Article  Google Scholar 

  7. Wang HT, Li FH, Cai YL, Liu YM, Yang YW (2020) Experimental and theoretical analysis of ball screw under thermal effect[J]. Tribol Int 152(2):106503

    Article  Google Scholar 

  8. Ye W, Guo Y, Liang R, Xu J (2020) Research on thermo-mechanical coupling deformation for the ball screw of machine tool spindle feed system[J]. J Vib Eng Technol 8(3):443–454

    Article  Google Scholar 

  9. Liu JL, Ma C, Wang SL, Wang SB, Yang B, Shi H (2019) Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis[J]. Mech Syst Signal Process 121:471–495

    Article  Google Scholar 

  10. Zhou CG, Zhou HX, Feng HT (2020) Experimental analysis of the wear coefficient of double-nut ball screws[J]. Wear 446:203201

    Article  Google Scholar 

  11. Li ZJ, Lu ZC, Zhao CY, Liu FC, Chen Y (2019) Heat source forecast of ball screw drive system under actual working conditions based on on-line measurement of temperature sensors[J]. Sensors (Basel, Switzerland) 19(21):4694

    Article  Google Scholar 

  12. Man B, Guo YH, Ji GZ, Fan XY (2022) Research on transient thermal-structural coupling characteristics and thermal error prediction of ball screw feed system[J]. SAE Int J Mater Manuf 15(4):313–325

    Article  Google Scholar 

  13. Ibaraki S, Okumura R (2021) A machining test to evaluate thermal influence on the kinematics of a five-axis machine tool[J]. Int J Mach Tools Manuf 163:103702

    Article  Google Scholar 

  14. Li ZJ, Zhao CY, Wen BC, Lu ZC (2019) Heat source rate identification and thermal error predictions of ball screw feed drive system for CNC machine tools[J]. J Northeastern Univ (Nat Sci) 40(9):1305–1309

    Google Scholar 

  15. Jin C, Wu B, Hu YM (2015) Temperature distribution and thermal error prediction of a CNC feed system under varying operating conditions[J]. Precis Eng 77(9–12):1979–1992

    Google Scholar 

  16. Shi H, He B, Yue YY, Min CQ, Mei XS (2019) Cooling effect and temperature regulation of oil cooling system for ball screw feed drive system of precision machine tool[J]. Appl Therm Eng 161:114150

    Article  Google Scholar 

  17. Shi H, Ma C, Yang J, Zhao L, Mei XS, Gong GF (2015) Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools[J]. Int J Mach Tools Manuf 97:60–71

    Article  Google Scholar 

  18. Li XS, Xu JN (2017) Analysis of fluid-solid-thermal coupling for ball screw in boring-milling machining center[J]. Procedia Eng 174:530–536

    Article  Google Scholar 

  19. Li R, Lin W, Zhang JY, Chen ZP, Li CG, Shuang QL (2018) Research on thermal deformation of feed system for high-speed vertical machining center[J]. Procedia Comput Sci 131:469–476

    Article  Google Scholar 

  20. Weng LT, Gao WG, Lv ZS, Zhang DW, Liu T, Wang Yu, Qi XY, Tian YL (2018) Influence of external heat sources on volumetric thermal errors of precision machine tools[J]. Int J Adv Manuf Technol 99(1–4):475–495

    Article  Google Scholar 

  21. Weng LT, Gao WG, Zhang DW, Huang T, Li W, Zheng YJ, Shi K, Chang WF (2021) Analytical modelling method for thermal balancing design of machine tool structural components[J]. Int J Mach Tools Manuf 164:103715

    Article  Google Scholar 

  22. Liu SH, Lin M (2019) Thermal–mechanical coupling analysis and experimental study on CNC machine tool feed mechanism[J]. Int J Precis Eng Manuf 20(6):993–1006

    Article  Google Scholar 

  23. Sheng X, Lu X, Zhang JR, Lu YQ (2021) An analytical solution to temperature field distribution in a thick rod subjected to periodic-motion heat sources and application in ball screws[J]. Eng Optim 53(12):2144–2163

    Article  MathSciNet  MATH  Google Scholar 

  24. Chi M, Jla B, Swa B (2020) Thermal error compensation of linear axis with fixed-fixed installation[J]. Int J Mech Sci 175:105531

    Article  Google Scholar 

  25. Liu HL, Rao ZF, Pang RD, Zhang YM (2021) Research on thermal characteristics of ball screw feed system considering nut movement[J]. Machines 9(11):249

    Article  Google Scholar 

  26. Li TJ, Liu K (2019) Dynamic model on thermally induced characteristics of ball screw systems[J]. Int J Adv Manuf Technol 103(9–12):3703–3715

    Article  Google Scholar 

  27. Gao XS, Zhang K, Wang M, Zan T, Gao P, Liu CZ (2022) Optimization of nano coating to reduce the thermal deformation of ball screws[J]. Nanotechnol Rev 11(1):438–451

    Article  Google Scholar 

  28. Gao X, Qin Z, Guo Y, Wang M, Zan T (2019) Adaptive method to reduce thermal deformation of ball screws based on carbon fiber reinforced plastics[J]. Materials 12(19):3113

    Article  Google Scholar 

  29. Gao X, Guo Y, Wang M, Zan T (2020) Further study on thermal deformation reduction for CFRP-based improved ball screws[J]. Adv Composit Lett 29:2633366X2091798

    Article  Google Scholar 

  30. Nozaki T, Otsuka J, Toake Y, Nakata A, Yukihira KI, Shirai K, Nishide T (2017) Decrease on temperature rise of ball screw by water cooling of the nut from outside[J]. J Jpn Soc Precis Eng 83(1):89–93

    Article  Google Scholar 

  31. Eckart U, Sebastian S (2022) Performance analysis of an adaptive cooling system with primary and secondary heat paths for linear direct drives in machine tools[J]. CIRP J Manuf Sci Technol 39:91–103

    Article  Google Scholar 

  32. Xu ZZ, Liu XJ, Kim HK, Shin JH, Lyu SK (2011) Thermal error forecast and performance evaluation for an air-cooling ball screw system[J]. Int J Mach Tools Manuf 51(7–8):605–611

    Article  Google Scholar 

  33. Yang JC, Li CY, Xu MT, Zhang YM (2022) Analysis of thermal error model of ball screw feed system based on experimental data[J]. Int J Adv Manuf Technol 119(11–12):7415–7427

    Article  Google Scholar 

  34. Cao L, Park CH, Chung SC (2022) Real-time thermal error prediction and compensation of ball screw feed systems via model order reduction and hybrid boundary condition update[J]. Precis Eng 77:227–240

    Article  Google Scholar 

  35. Li GL, Ke H, Li CZ, Biao L (2020) Thermal error modeling of feed axis in machine tools using particle swarm optimization-based generalized regression neural network[J]. J Comput Inf Sci Eng 20(2):021003

    Article  Google Scholar 

  36. Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools[J]. Int J Mach Tools Manuf 95:20–38

    Article  Google Scholar 

  37. Xu S, Sun YF, Shen H (2013) Load distribution of ball screw with contact angle variation[J]. Adv Des Manuf Technol III, PTS 1–4(397–400):435–440

    Google Scholar 

  38. Chen YJ, Tang WC (2014) Determination of contact stiffness in ball screws considering variable contact angles[J]. Proc Inst Mech Eng Part C-J Mech Eng Sci 228(12): 2193-2203

Download references

Funding

This research is supported by Jiangsu Science and Technology Achievement Conversion Project (No.BA2018093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunwen Zuo.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, J., Liu, H. et al. Time-varying thermoelastic coupling analysis of heat source of ball screw feed drive system. Int J Adv Manuf Technol 129, 923–939 (2023). https://doi.org/10.1007/s00170-023-12352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12352-7

Keywords

Navigation