Skip to main content
Log in

Statistical analysis of experimental factors for synthesis of copper oxide and tin oxide for antibacterial applications

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This research explores the impact of Cu composition, heating temperature, and milling time on the production of copper-tin alloy nanoparticles. By employing design of experiments techniques, the study systematically evaluates these input variables and their effects on particle size, optical density, and number of colonies. The identification of new Cu3Sn phases in the nanoparticle structure contributes to the novelty of this research. The findings highlight the potential for optimizing copper-tin alloy nanoparticle synthesis and enhancing their antibacterial properties. Mechanical alloying is found to produce nanoparticles up to 15 nm in size. Increasing the percentage of copper leads to improved antibacterial properties. This work provides insights into the synthesis process of copper-tin mechanical alloying and their potential for antibacterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data will be provided upon request from the corresponding authors.

References

  1. Vimbela G, Ngo SM, Fraze C, Yang L, Stout DA (2017) antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine 12:3941–3965. https://doi.org/10.2147/ijn.s134526

    Article  Google Scholar 

  2. Aien J, Khan AA, Haq S, Khan AR, Elmnasri K, Ben Ali M, AL Harbi MS, Alghonaim MI, Alsalamah SA, Qurtam AA, Boufahja F, Hedfi A, Dellali M (2023) Antibacterial, antioxidant and physicochemical properties of pipper nigram aided copper oxide nanoparticles. Crystals (Basel) 13:330

    Article  Google Scholar 

  3. Rezayat M, Yazdi M, Noghani M, Ahmadi R (2020) Bactericidal properties of copper-tin nanoparticles on escherichia coli in a liquid environment. Plasma 3:153–165

    Article  Google Scholar 

  4. Strnad G, Jakab-Farkas L, Gobber FS, Peter I (2023) Synthesis and characterization of nanostructured oxide layers on Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe biomedical alloys. J Funct Biomater 14:180. https://doi.org/10.3390/jfb14040180

    Article  Google Scholar 

  5. Rudayni HA, Shemy MH, Aladwani M, Alneghery LM, Abu-Taweel GM, Allam AA, Abukhadra MR, Bellucci S (2023) Synthesis and biological activity evaluations of green ZnO-decorated acid-activated bentonite-mediated curcumin extract (ZnO@CU/BE) as antioxidant and antidiabetic agents. J Funct Biomater 14:198. https://doi.org/10.3390/jfb14040198

    Article  Google Scholar 

  6. Azam A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine 3527. https://doi.org/10.2147/ijn.s29020.

  7. SaghafiYazdi M, Rezayat M, Rovira JJR (2022) ElectroCatalytic activity of nickel foam with Co, Mo, and Ni phosphide nanostructures. Plasma 5:221–232. https://doi.org/10.3390/plasma5020017

    Article  Google Scholar 

  8. Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnology 9:34. https://doi.org/10.1186/1477-3155-9-34

    Article  Google Scholar 

  9. Duran DC, Gogan LM, Artene A, Duran V (2015) The components of sustainable—a possible approach. Procedia Econ Finance 26:806–811. https://doi.org/10.1016/s2212-5671(15)00849-7

    Article  Google Scholar 

  10. Gebreslassie YT, Gebretnsae HG (2021) Green and cost-effective synthesis of tin oxide nanoparticles: a review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett 16. https://doi.org/10.1186/s11671-021-03555-6.

  11. Gautam M, Kim JO, Yong CS (2021) Fabrication of aerosol-based nanoparticles and their applications in biomedical fields. J Pharm Investig 51:361–375. https://doi.org/10.1007/s40005-021-00523-1

    Article  Google Scholar 

  12. Rezayat M, Yazdi MS, Zandi MD, Azami A (2022) Tribological and corrosion performance of electrodeposited Ni-Fe/Al2O3 coating. Results Surfaces Interfaces 100083. https://doi.org/10.1016/j.rsurfi.2022.100083

  13. Khatua A, Kumari K, Khatak D, Roy A, Bhatt N, Paul B, Naik A, Patel AK, Panigrahi UK, Sahu SK, Saravanan M, Meena R (2023) Synthesis and spectral characterisation of fabricated cerium-doped magnesium oxide nanoparticles: evaluation of the antimicrobial potential and its membranolytic activity through large unilamellar vesicles. J Funct Biomater 14:112. https://doi.org/10.3390/jfb14020112

    Article  Google Scholar 

  14. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, Li L, Ruan B (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194. https://doi.org/10.1016/j.bbi.2015.03.016

    Article  Google Scholar 

  15. Li T, Lu Y, Zhang H, Wang L, Beier RC, Jin Y, Wang W, Li H, Hou X (2021) Antibacterial activity and membrane-targeting mechanism of aloe-emodin against staphylococcus epidermidis. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.621866

  16. Moradi M, Moghadam MK, Shamsborhan M, Beiranvand ZM, Rasouli A, Vahdati M, Bakhtiari A, Bodaghi M (2020) Simulation, statistical modeling, and optimization of CO2 laser cutting process of polycarbonate sheets. Optik (Stuttg). 164932. https://doi.org/10.1016/j.ijleo.2020.164932

  17. Hasani A, Azadbeh M, Moradi M (2020) Sintering process of Cu–28Zn brass alloy: statistical investigation. Trans Indian Inst Metals 73:1383–1400. https://doi.org/10.1007/s12666-020-01982-0

    Article  Google Scholar 

  18. Moradi M, KaramiMoghadam M (2019) High power diode laser surface hardening of AISI 4130; statistical modelling and optimization. Opt Laser Technol 111:554–570. https://doi.org/10.1016/j.optlastec.2018.10.043

    Article  Google Scholar 

  19. Bahloul A, Brochot C, Abdolghader P, Haghighat F (2019) Development of a procedure to measure the performance of ventilation filters for nanoparticles. IOP Conf Ser Mater Sci Eng 609:32032. https://doi.org/10.1088/1757-899x/609/3/032032

    Article  Google Scholar 

  20. Dong X, Milholland B, Vijg J, Dong et al (2017) Reply. Nature 546:E7–E7. https://doi.org/10.1038/nature22785

    Article  Google Scholar 

  21. Moghaddam VK, Dickerson AS, Bazrafshan E, Seyedhasani SN, Najafi F, Hadei M, Momeni J, Moradi G, Sarmadi M (2021) Socioeconomic determinants of global distribution of multiple sclerosis: an ecological investigation based on global burden of disease data. BMC Neurol 21. https://doi.org/10.1186/s12883-021-02170-3

  22. Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi HAA, Jeda AS, Dashtbin S, Jalalifar S, Mohammadzadeh R, Teimoori A, Tari K, Salari M, Ghiasvand S, Kazemi S, Yousefimashouf R, Keyvani H, Karampoor S (2020) Bacterial co-infections with SARS-CoV-2. IUBMB Life 72:2097–2111. https://doi.org/10.1002/iub.2356

    Article  Google Scholar 

  23. Kaur R, Labins JR, Helbock SS, Jiang W, Bein KJ, Zhang Q, Anastasio C (2019) Photooxidants from brown carbon and other chromophores in illuminated particle extracts, Atmos. Chem Phys 19:6579–6594. https://doi.org/10.5194/acp-19-6579-2019

    Article  Google Scholar 

  24. Guemmoud N, Hafs A, Hafs T (2022) Effect of milling time on the structural, microstructure, and magnetic properties of nanocrystalline Fe90Sb10 powders obtained by high-energy ball milling. The International Journal of Advanced Manufacturing Technology 122:2043–2058. https://doi.org/10.1007/s00170-022-10003-x

    Article  Google Scholar 

  25. AmiriMoghaddam J, Jautzus T, Alanjary M, Beemelmanns C (2021) Recent highlights of biosynthetic studies on marine natural products. Org Biomol Chem 19:123–140. https://doi.org/10.1039/d0ob01677b

    Article  Google Scholar 

  26. Akhtar MS, Chauhan D, Ghosal D, Poria S, Ekbal A, Bhattacharyya P (2019) Multi-task Learning for multi-modal emotion recognition and sentiment analysis. Proc 2019 Conference of the North. https://doi.org/10.18653/v1/n19-1034

  27. Calvo V, González‐Domínguez JM, Benito AM, Maser WK (2021) Synthesis and processing of nanomaterials mediated by living organisms. Angewandte Chemie Int Ed 61. https://doi.org/10.1002/anie.202113286

  28. Paulose S, Raghavan R, George BK (2017) Functionalized white graphene – Copper oxide nanocomposite: synthesis, characterization and application as catalyst for thermal decomposition of ammonium perchlorate. J Colloid Interface Sci 494:64–73. https://doi.org/10.1016/j.jcis.2017.01.065

    Article  Google Scholar 

  29. Zhu M, Xu L, Du L, An Y, Wan C (2018) Palladium supported on carbon nanotubes as a high-performance catalyst for the dehydrogenation of dodecahydro-N-ethylcarbazole. Catalysts 8:638. https://doi.org/10.3390/catal8120638

    Article  Google Scholar 

  30. Alam S, Khan MS, Umar A, Khattak R, Rahman N, Zekker I, Burlakovs J, Rubin SSDC, Ghangrekar MM, Bhowmick GD, Kallistova A, Pimenov N, Khan A, Zahoor M (2021) Preparation of Pd–Ni nanoparticles supported on activated carbon for efficient removal of basic blue 3 from water. Water (Basel) 13:1211. https://doi.org/10.3390/w13091211

    Article  Google Scholar 

  31. Arun J, Nachiappan S, Rangarajan G, Alagappan RP, Gopinath KP, Lichtfouse E (2022) Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01503-z

    Article  Google Scholar 

  32. Laime-Oviedo LA, Soncco-Ccahui AA, Peralta-Alarcon G, Arenas-Chávez CA, Pineda-Tapia JL, Díaz-Rosado JC, Alvarez-Risco A, Del-Aguila-Arcentales S, Davies NM, Yáñez JA, Vera-Gonzales C (2022) Optimization of synthesis of silver nanoparticles conjugated with Lepechinia meyenii (Salvia) using Plackett-Burman design and response surface methodology—preliminary antibacterial activity. Processes 10:1727. https://doi.org/10.3390/pr10091727

    Article  Google Scholar 

  33. Mohammadpour A, Karami N, Zabihi R, Fazeliyan E, Abbasi A, Karimi S, de Farias M, Adeodato Vieira MG, Shahsavani E, Mousavi Khaneghah A (2021) Green synthesis, characterization, and application of Fe3O4 nanoparticles for methylene blue removal: RSM optimization, kinetic, isothermal studies, and molecular simulation. Environ Res. 225:115507. https://doi.org/10.1016/j.envres.2023.115507

    Article  Google Scholar 

  34. Ben Amor I, Hemmami H, Laouini SE, Mahboub MS, Barhoum A (2022) Sol-gel synthesis of ZnO nanoparticles using different chitosan sources: effects on antibacterial activity and photocatalytic degradation of AZO dye. Catalysts 12:1611. https://doi.org/10.3390/catal12121611

    Article  Google Scholar 

  35. TurcuStiolica A, Popescu M, Bubulica MV, Oancea CN, Nicolicescu C, Manda CV, Neamtu J, Croitoru O (2017) Optimization of gold nanoparticles synthesis using design of experiments technique. Revista de Chimie 68:1423–1518. https://doi.org/10.37358/RC.17.7.5688

    Article  Google Scholar 

  36. Mérida F (2015) Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates. J Magn Magn Mater. 394:361–371. https://doi.org/10.1016/2Fj.jmmm.2015.06.076

    Article  Google Scholar 

  37. Chou C, Chen S (2006) Phase equilibria of the Sn–Zn–Cu ternary system. Acta Mater 54:2393–2400. https://doi.org/10.1016/j.actamat.2006.01.014

    Article  Google Scholar 

  38. Jing F, Liu Y, Du Y, Shi C, Hu B, He X (2023) Phase equilibria, thermodynamics and solidified microstructure in the copper–zirconium–yttrium system. Materials 16:2063. https://doi.org/10.3390/ma16052063

    Article  Google Scholar 

  39. Neikov OD (2009) Mechanical Alloying. Handbook of non-ferrous metal powders. 63–79. https://doi.org/10.1016/b978-1-85617-422-0.00003-3

  40. Cheng X, Wang Z, Nakamoto K, Yamazaki K (2011) A study on the micro tooling for micro/nano milling. Int J Adv Manuf Technol 53:523–533. https://doi.org/10.1007/s00170-010-2856-3

    Article  Google Scholar 

  41. Arendsen LP, Thakar R, Sultan AH (2019) The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin Microbiol Rev 32. https://doi.org/10.1128/cmr.00125-18

  42. Silhavy TJ, Kahne D, Walker S (2010) the bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414–a000414. https://doi.org/10.1101/cshperspect.a000414

    Article  Google Scholar 

Download references

Acknowledgements

The authors respectfully acknowledge the technical support provided by Razi Foundation for laboratory equipment.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design and analysis. Material preparation and data collection were performed by M.R. The first draft of the manuscript was written by M.R., and all authors commented on all versions of the manuscript.

Corresponding authors

Correspondence to Mohammad Rezayat or Mahdi Bodaghi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezayat, M., Karamimoghadam, M., Yazdi, M.S. et al. Statistical analysis of experimental factors for synthesis of copper oxide and tin oxide for antibacterial applications. Int J Adv Manuf Technol 127, 3017–3030 (2023). https://doi.org/10.1007/s00170-023-11728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11728-z

Keywords

Navigation