Skip to main content
Log in

Preparation and forming mechanism of ultrathin-walled Ni-Cu alloy tubes with submicrometer structures by ball spinning

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ball spinning at room temperature produced the ultrathin-walled Ni-Cu alloy tubes with submicrometer structures. The microstructure evolution and strengthening mechanism of tubes with different thickness reduction ratios were investigated. Transmission electron microscopy (TEM) shows that the dislocation slip dominates the formation of ultra-fine laminated (UFL) structures and ultra-fine grains (UFGs) during ball spinning. The high strain rate and strain gradient promote the slip of dislocation, the refinement of grains, the supplement of deformation twins, and eventually form the Ni-Cu alloy tubes with ultra-thin thickness. X-ray diffraction (XRD) and electron back-scattering diffraction (EBSD) analysis suggests that there are more low-angle grain boundaries (LAGBs) and geometrically necessary dislocations (GNDs) in the tubes when the value of thickness reduction ratio reaches 80%. At this time, the inner texture is primarily < 110 > //RD and cubic. The increase of the thickness reduction ratio to 90% decreases the percentage of LAGBs, the density of GNDs, and the intensity of < 1 1 0 > //RD. A microhardness measurement system was utilised to detect the Vickers hardness of each tube. After ball spinning, the uniformity of structure and hardness of tubes are significantly improved. When the value of thickness reduction ratio is 80%, the average Vickers hardness value of the tube is increased by 74.5%. When the value of thickness reduction ratio attains 90%, the average Vickers hardness is increased by 122.9% compared with the tube blank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data and materials will be available upon request.

Code availability

Not applicable.

References

  1. Jiang S, Zhang Y, Zhao Y, Tang M, Li C (2013) Finite element simulation of ball spinning of NiTi shape memory alloy tube based on variable temperature field. Trans Nonferrous Met Soc China 23:781–787. https://doi.org/10.1016/S1003-6326(13)62529-7

    Article  Google Scholar 

  2. Jiang H, Li L, Dong J, Xie X (2018) Microstructure-based hot extrusion process control principles for nickel-base superalloy pipes. Prog Nat Sci 28(3):391–398. https://doi.org/10.1016/j.pnsc.2018.04.009

    Article  Google Scholar 

  3. Goranova D, Avdeev G, Rashkov R (2014) Electrodeposition and characterisation of Ni-Cu alloys. Surf Coat Technol 240:204–210. https://doi.org/10.1016/j.surfcoat.2013.12.014

    Article  Google Scholar 

  4. Zhan M, Yang H, Guo J, Wang X (2015) Review on hot spinning for difficult-to-deform lightweight metals. Trans Nonferrous Met Soc China 25(6):1732–1743. https://doi.org/10.1016/S1003-6326(15)63778-5

    Article  Google Scholar 

  5. Sun Y, Xu S, Shan A (2015) Effects of annealing on microstructure and mechanical properties of nano-grained Ni-based alloy produced by severe cold rolling. Mater Sci Eng A-Struct Mater Prop Microstruct Process 641:181–188. https://doi.org/10.1016/j.msea.2015.06.043

    Article  Google Scholar 

  6. Kapp M, Renk O, Ghosh P, Leitner T, Yang B, Pippan R (2020) Plastic strain triggers structural instabilities upon cyclic loading in ultrafine-grained nickel. Acta Mater 200:136–147. https://doi.org/10.1016/j.actamat.2020.08.049

    Article  Google Scholar 

  7. Takamasu N, Miyazawa T, Miyajima Y, Adachi H, Onaka S (2019) Evaluation of elastic deformation behavior of ARB processed ultrafine grained Ni polycrystalline material by X-ray diffraction. J Jpn Inst Met Mater 83(5):157–165. https://doi.org/10.2320/jinstmet.J2018058

    Article  Google Scholar 

  8. Kotzurek J, Sprengel W, Krystian M, Simic S, Polt P, Hohenwarter A, Pippan R, Wurschum R (2017) Structural anisotropy in equal-channel angular extruded nickel revealed by dilatometric study of excess volume. Int J Mater Res 108(2):81–88. https://doi.org/10.3139/146.111463

    Article  Google Scholar 

  9. Shi X, Hu Z, Hu X, Zhang J, Cui L (2017) Effect of plastic deformation on stress-induced martensitic transformation of nanocrystalline NiTi alloy. Mater Charact 128:184–188. https://doi.org/10.1016/j.matchar.2017.04.002

    Article  Google Scholar 

  10. Cao Y, Ni S, Liao X, Song M, Zhu Y (2018) Structural evolutions of metallic materials processed by severe plastic deformation. Mater Sci Eng R-Rep 133:1–59. https://doi.org/10.1016/j.mser.2018.06.001

    Article  Google Scholar 

  11. Kuss M, Buchmayr B (2016) Damage minimised ball spinning process design. Journal of Materials Processing Tech 234:10–17. https://doi.org/10.1016/j.jmatprotec.2016.03.007

    Article  Google Scholar 

  12. Hirama S, Ikeda T, Gondo S, Kajikawa S, Kuboki T (2020) Ball spin forming for flexible and partial diameter reduction in tubes. Metals 10(12):1627–1627. https://doi.org/10.3390/MET10121627

    Article  Google Scholar 

  13. Jiang S, Zhang Y, Zheng Y, Li C (2012) Deformation mechanism of hot spinning of NiTi shape memory alloy tube based on FEM. J Wuhan Univ Technol-Mat Sci Edit 27:811–814. https://doi.org/10.1007/s11595-012-0553-9

    Article  Google Scholar 

  14. Kuss M, Buchmayr B (2015) Analytical, numerical and experimental investigations of a ball spinning expansion process. J Mater Process Technol 224:213–221. https://doi.org/10.1016/j.jmatprotec.2015.05.010

    Article  Google Scholar 

  15. Zhang Y, Jiang S, Sun J, Zhao L (2010) Study on forming mechanism of thin-walled tube in multi-pass ball spinning. Forg Stamping Technol 35(2):55–58. https://doi.org/10.3969/j.issn.1000-3940.2010.02.013

    Article  Google Scholar 

  16. Hui T, Lei B, Li Y, Jia L (2018) Effects of processing parameters of casting-extruding on microstructure and mechanical properties of P91 thick-wall steel tube. J Mech Eng 54(12):156–164. https://doi.org/10.3901/JME.2018.12.156

    Article  Google Scholar 

  17. Zhang Y, Wang W, Chen H, Cao X, Zhang T, Zhang Y (2019) Microstructure evolution and micro/nano mechanical properties of spinning AZ91 magnesium alloy tubes. Rare Metal Mat Eng 48 (2):580–586. CNKI:SUN:COSE.0.2019-02-031.

  18. Wang Y, Liu H, Song H, Liu J, Shen H, Jin Y, Wang G (2017) Ultra-thin grain-oriented silicon steel sheet fabricated by a novel way: twin-roll strip casting and two-stage cold rolling. Trans Nonferrous Met Soc China 452:288–296. https://doi.org/10.1016/j.jmmm.2017.12.064

    Article  Google Scholar 

  19. Song H, Liu H, Wang Y, Wang G (2017) Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method. J Magn Magn Mater 426:32–39. https://doi.org/10.1016/j.jmmm.2016.11.038

    Article  Google Scholar 

  20. Guo T, Ding Y, Yuan X, Hu Y (2011) Grain orientation evolution and texture fluctuation effect of pure copper during equal channel angular pressing. The Chinese Journal of Nonferrous Metals 21(2):384–391. https://doi.org/10.19476/j.ysxb.1004.0609.2011.02.020.

  21. Liu X, Zhang H, Lu K (2015) Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment. Acta Mater 96:24–36. https://doi.org/10.1016/j.actamat.2015.06.014

    Article  Google Scholar 

  22. Bay B, Hansen N, Hughes D, Kuhlmann-Wilsdorf D (1992) Overview no. 96: Evolution of F.C.C. deformation structures in polyslip. N/A 40:205–219. https://doi.org/10.1016/0956-7151(92)90296-Q

    Article  Google Scholar 

  23. Jamaati R, Toroghinejad M, Edris H, Salmani M (2014) Fabrication of nano/ultra-fine grained IF steel via SPD processes: a review. Trans Indian Inst Met 67:787–802. https://doi.org/10.1007/s12666-014-0404-9

    Article  Google Scholar 

  24. Zhang H, Huang X, Pippan R, Hansen N (2010) Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion. Acta Mater 58(5):1968–1707. https://doi.org/10.1016/j.actamat.2009.11.012.

  25. Ren C, Wang Q, Hou J, Zhang Z, Zhang Z (2021) Effect of work-hardening capacity on the gradient layer properties of metallic materials processed by surface spinning strengthening. Mater Charact 177:111179. https://doi.org/10.1016/j.matchar.2021.111179

    Article  Google Scholar 

  26. Zhang B, Meng A, Meng W (2021) Deviation of mechanical behavior in micro forming from continuum scaling: a geometrically necessary dislocation storage perspective. Int J Mach Tools Manuf 169:103795. https://doi.org/10.1016/j.ijmachtools.2021.103795

    Article  Google Scholar 

  27. Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A-Struct Mater Prop Microstruct Process 527(10–11):2738–2746. https://doi.org/10.1016/j.msea.2010.01.004

    Article  Google Scholar 

  28. Zhang D, Zhang J, Kuang J, Liu G, Sun J (2021) Superior strength-ductility synergy and strain hardenability of Al/Ta co-doped NiCoCr twinned medium entropy alloy for cryogenic applications. Acta Mater 220:1–13. https://doi.org/10.1016/j.actamat.2021.117288

    Article  Google Scholar 

  29. Yang D, Cizek P, Hodgson P, Wen C (2010) Microstructure evolution and nanograin formation during shear localisation in cold-rolled titanium. Acta Mater 58(13):4536–4548. https://doi.org/10.1016/j.actamat.2010.05.007

    Article  Google Scholar 

  30. Cai Y, Wang X, Yuan S (2018) Quantitative analysis of orange peel during tension of 6063 alloy spun tubes. Trans Nonferrous Met Soc China 28(5):858–865. https://doi.org/10.1016/S1003-6326(18)64719-3

    Article  Google Scholar 

  31. Gallai Y, Karmanova E, Zorina N, Grigor′eva M (1967) Cold working and recrystallisation of nickel alloys. Met Sci Heat Treat 9:323–324. https://doi.org/10.1007/BF00652979

    Article  Google Scholar 

  32. Meyers M, Mishra A, Benson D (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51(4):427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003

    Article  Google Scholar 

  33. Montheillet F, Cohen M, Jonas J (1984) Axial stresses and texture development during the torsion testing of Al. Cu and α-Fe N/A 32(11):2077–2089. https://doi.org/10.1016/0001-6160(84)90187-1

    Article  Google Scholar 

  34. Liu X, Zhang H, Lu K (2013) Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342(6156):337–340. https://doi.org/10.1126/science.1242578

    Article  Google Scholar 

  35. Saha J, Saha R, Malladi S, Bhattacharjee P (2021) Microstructure and texture of CoCrNi medium entropy alloy (MEA) processed by severe cryo-rolling: a study vis-a-vis cold-rolling. Intermetallics 138:107345. https://doi.org/10.1016/j.intermet.2021.107345

    Article  Google Scholar 

  36. Chen J, Yang L, Hu X, Liu X (2020) Texture and microstructure evolution of 321 austenitic stainless steel ultra-thin strip during asynchronous rolling. IOP Conf Ser: Mater Sci Eng 892:012001. https://doi.org/10.1088/1757-899X/892/1/012001

    Article  Google Scholar 

  37. Aghamohammadi H, Hosseinipour S, Rabiee S, Jamaati R (2021) Effect of hot rolling on microstructure, crystallographic texture, and hardness of AZ31 alloy. Mater Chem Phys 273:125130. https://doi.org/10.1016/j.matchemphys.2021.125130

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [No. 51375325]; Key Programme [2018YFB1308701]; the Joint Fund of Coal [U1610118]; the grant from Shanxi Major Science and Technology Projects [No. 20191102009]; and the Shanxi Provincial Special Fund for the Coordinative Innovation Center of Taiyuan Heavy Machinery Equipment to support this research.

Author information

Authors and Affiliations

Authors

Contributions

Weizhuang Li: writing — original draft, visualisation; Yiwei Xu: formal analysis, data curation; Chen Wang: methodology, writing — review & editing; Tianxiang Wang: project administration, validation; Chunjiang Zhao: conceptualisation, supervision; Yan Zhou: writing — review & editing.

Corresponding authors

Correspondence to Tianxiang Wang or Chunjiang Zhao.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Xu, Y., Wang, C. et al. Preparation and forming mechanism of ultrathin-walled Ni-Cu alloy tubes with submicrometer structures by ball spinning. Int J Adv Manuf Technol 121, 5427–5437 (2022). https://doi.org/10.1007/s00170-022-09738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09738-4

Keywords

Navigation