Skip to main content
Log in

Multi-objective robust evolutionary optimization of the boring process of AISI 4130 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Boring is widely applied to enlarge holes. The high L/D ratio of boring bars enables self-excited vibration, deteriorating the quality of the hole. Therefore, this work aims the multi-objective evolutionary robust optimization of the boring process. Robust parameter design is employed to achieve robust models for roughness and roundness concerning tool overhang length and borehole depth, set as noise variables. These models aid the attainment of control factors’ levels, i.e., feed, cutting speed, and fixture position, which turn the responses less sensitive to noise. The robust models together with the material removal rate deterministic model are optimized through evolutionary multi-objective methods. The effects of process and noise factors are discussed considering literature. The multi-objective evolutionary optimization of the robust models helps to achieve these robust levels of process factors besides balancing the trade-off between the outcomes. The multi-objective robust evolutionary results outperform the scalarization approach considered for comparison purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The experimental results necessary to reproduce all analyses are provided in the paper.

Abbreviations

RPD:

Robust parameter design

GRA:

Grey relational analysis

RSM:

Response surface methodology

MOEA:

Multi-objective evolutionary

NSGA:

Non-dominated sorting genetic algorithm

MOPSO:

Multi-objective particle swarm optimization

E-HHPS:

Electric–×hydraulic hybrid power steering

NBI:

Normal boundary intersection

NNC:

Normalized normal constraint

ENNC:

Enhanced normalized normal constraint

GA:

Genetic algorithm

MSE:

Mean square error

MRR:

Material removal rate

PSO:

Particle swarm optimization

MOPSO-CD:

Multi-objective particle swarm optimization with crowding distance

FCD:

Face-centered central composite design

ANOVA:

Analysis of variance

OLS:

Ordinary least squares

WLS:

Weighted least squares

RMSE:

Root mean square error

v c :

Cutting speed m/min

f :

Feed rate mm/ver

f p :

Fixture position mm

a p :

Cutting depth mm

l to :

Tool overhang length mm

l b :

Borehole depth mm

n F :

Number of factorial points –

n C :

Number of center points –

n A :

Number of axial points –

R a :

Average surface roughness μm

Ron t :

Total roundness μm

MRR:

Material removal rate mm3/min

X :

Vector of control factors

Z :

Vector of noise factors

β 0 :

Intercept

β :

Vector of linear coefficients of control factors

γ :

Vector of linear coefficients of noise factors

B :

Matrix of second-order terms of control factors

Δ :

Matrix of process × noise interaction terms

R 2 adj :

Adjusted multiple determination coefficient

T E[y] :

Target value for mean model

E[y]:

Mean function

Var[y]:

Variance function

References

  1. Lawal SA, Ndaliman MB, Bala KC, Lawal SS (2017) Effect of cutting variables on boring process : a review, In: Hashmi MSJ (ed) Comprehensive Materials Finishing, Elsevier, pp 26–46

  2. Andr L (2004) Identification of dynamic properties of boring bar vibrations in a continuous boring operation. 18:869–901. https://doi.org/10.1016/S0888-3270(03)00093-1

  3. Andr L (2004) Identification of motion of cutting tool vibration in a continuous boring operation—correlation to structural properties. 18:903–927. https://doi.org/10.1016/j.ymssp.2003.09.009

  4. Östling D, Jensen T, Östling D et al (2018) ScienceDirect. Cutting process monitoring an instrumented boring CIRP Design with France bar measuring cutting force and vibration. Cutting Force and Vibratio. Procedia CIRP 77:235–238. https://doi.org/10.1016/j.procir.2018.09.004

    Article  Google Scholar 

  5. Lazoglu I, Atabey F, Altintas Y (2002) Dynamics of boring processes : part III-time domain modeling. 42:1567–1576

  6. Nguyen V, Melkote S, Deshamudre A, Khanna M (2018) PVDF sensor based on-line mode coupling chatter detection in the boring process. Manuf Lett 16:40–43. https://doi.org/10.1016/j.mfglet.2018.04.004

    Article  Google Scholar 

  7. Lemos N, Anselmo C, Diniz E et al (2018) Internal turning of sintered carbide parts : tool wear and surface roughness evaluation. J Braz Soc Mech Sci Eng 40:0123456789. https://doi.org/10.1007/s40430-018-1139-z

    Article  Google Scholar 

  8. Guo Y, Dong H, Wang G, Ke Y (2016) International Journal of Machine Tools & Manufacture. Vibration analysis and suppression in robotic boring process. Int J Mach Tools Manuf 101:102–110. https://doi.org/10.1016/j.ijmachtools.2015.11.011

    Article  Google Scholar 

  9. Sorby K, Ostling D (2018) Precision turning with instrumented vibration-damped boring bars. Procedia CIRP 77:666–669. https://doi.org/10.1016/j.procir.2018.08.181

    Article  Google Scholar 

  10. Sørby K, Sundseth E (2015) High-accuracy turning with slender boring bars. Adv Manuf 3:105–110. https://doi.org/10.1007/s40436-015-0112-7

    Article  Google Scholar 

  11. Han X, Liu Z, Wang T (2019) Investigation of tool wear in pull boring of pure niobium tubes. J Braz Soc Mech Sci Eng 6:1–11. https://doi.org/10.1007/s40430-018-1541-6

    Article  Google Scholar 

  12. Wang G, Dong H, Guo Y, Ke Y (2015) Dynamic cutting force modeling and experimental study of industrial robotic boring. https://doi.org/10.1007/s00170-015-8166-z

  13. Diniz AE, da Silva WTA, Suyama DI, Pederiva R, Albuquerque MV (2019) Evaluating the use of a new type of impact damper for internal turning tool bar in deep holes. Int J Adv Manug Tech 101:1375–1390. https://doi.org/10.1007/s00170-018-3039-x

  14. Suyama DI, Diniz AE, Pederiva R (2016) Tool vibration in internal turning of hardened steel using cBN tool. Int J Adv Manuf Technol 88:2485–2495. https://doi.org/10.1007/s00170-016-8964-y

    Article  Google Scholar 

  15. Song Q, Shi J, Liu Z et al (2015) Boring bar with constrained layer damper for improving process stability. https://doi.org/10.1007/s00170-015-7670-5

  16. Yigit U, Cigeroglu E, Budak E (2017) Chatter reduction in boring process by using piezoelectric shunt damping with experimental verification. Mech Syst Signal Process 94:312–321. https://doi.org/10.1016/j.ymssp.2017.02.044

    Article  Google Scholar 

  17. Sam Paul P, Lawrence G, Yadav RK, Mohankrishnan NV, Nair N, Vasanth XA (2014) Analysis of dynamic characteristics of boring tool holder. Procedia Mater Sci 5:2283–2292. https://doi.org/10.1016/j.mspro.2014.07.471

    Article  Google Scholar 

  18. Suyama DI, Diniz AE, Pederiva R (2016) The use of carbide and particle-damped bars to increase tool overhang in the internal turning of hardened steel. https://doi.org/10.1007/s00170-015-8328-z

  19. Ghorbani S, Rogov VA, Carluccio A, Belov PS (2019) The effect of composite boring bars on vibration in machining process. Int J Adv Manug Tech. v.105:1157–1174. https://doi.org/10.1007/s00170-019-04298-6

  20. Totis G, Sortino M (2014) Robust analysis of stability in internal turning. Procedia Eng 69:1306–1315. https://doi.org/10.1016/j.proeng.2014.03.123

    Article  Google Scholar 

  21. Liu X, Liu Q, Wu S, Liu L, Gao H (2016) Research on the performance of damping boring bar with a variable stiffness dynamic vibration absorber. Int J Adv Manuf Technol 89:2893–2906. https://doi.org/10.1007/s00170-016-9612-2

    Article  Google Scholar 

  22. Singh G, Singh G, Pradhan S (2018) ScienceDirect. Improving the surface roughness and flank wear of the boring process using particle damped boring bars. Mater Today Proc 5:28186–28194. https://doi.org/10.1016/j.matpr.2018.10.062

    Article  Google Scholar 

  23. Fallah M, Moetakef-Imani B (2019) Design, analysis, and implementation of a new adaptive chatter control system in internal turning. Int J Adv Manug Tech 104:1637–1659. https://doi.org/10.1007/s00170-019-03808-w

  24. de Aguiar HCG, Hassui A, Suyama DI, Magri A (2020) Reduction of internal turning surface roughness by using particle damping aided by airflow. Int J Adv Manug Tech 106:125–131. https://doi.org/10.1007/s00170-019-04566-5

    Article  Google Scholar 

  25. Paul GLPS, Raj SB, Paul PS (2019) Suppression of tool vibration in boring process : a review. J Inst Eng Ser C 100:1053–1069. https://doi.org/10.1007/s40032-019-00531-z

    Article  Google Scholar 

  26. Senbabaoglu F, Lazoglu I, Ozkeser SO (2010) Experimental analysis of boring process on automotive engine cylinders:11–21. https://doi.org/10.1007/s00170-009-2271-9

  27. Munawar M, Chen JC, Mufti NA (2011) Investigation of cutting parameters effect for minimization of sur face roughness in internal turning. 12:121–127. https://doi.org/10.1007/s12541-011-0015-x

  28. Kuster F, Gygax PE (1990) Cutting dynamics and stability of boring bars. CIRP Ann Manuf Technol 39:361–366. https://doi.org/10.1016/S0007-8506(07)61073-7

    Article  Google Scholar 

  29. Ramesh K, Baranitharan P, Sakthivel R (2018) Investigation of the stability on boring tool attached with double impact dampers using Taguchi based grey analysis and cutting tool temperature investigation through FLUKE-Thermal imager. Measurement. 131:143–155. https://doi.org/10.1016/j.measurement.2018.08.055

    Article  Google Scholar 

  30. Mishra V, Khan GS, Chattopadhyay KD, Nand K, Sarepaka RGV (2014) Effects of tool overhang on selection of machining parameters and surface finish during diamond turning. Meas J Int Meas Confed 55:353–361. https://doi.org/10.1016/j.measurement.2014.05.019

    Article  Google Scholar 

  31. Pereira RBD, Leite RR, Alvim AC, de Paiva AP, Balestrassi PP, Ferreira JR, Paulo Davim J (2018) Multivariate robust modeling and optimization of cutting forces of the helical milling process of the aluminum alloy Al 7075. Int J Adv Manuf Technol 95:2691–2715. https://doi.org/10.1007/s00170-017-1398-3

    Article  Google Scholar 

  32. Rodrigues VFS, Ferreira JR, Paulo De Paiva A et al (2018) Robust modeling and optimization of borehole enlarging by helical milling of aluminum alloy Al7075. Int J Adv Manuf Technol 100:2583–2599. https://doi.org/10.1007/s00170-018-2832-x

    Article  Google Scholar 

  33. Pereira RBD, da Silva LA, Lauro CH, Brandão LC, Ferreira JR, Davim JP (2019) Multi-objective robust design of helical milling hole quality on AISI H13 hardened steel by normalized normal constraint coupled with robust parameter design. Appl Soft Comput 75:652–685. https://doi.org/10.1016/j.asoc.2018.11.040

    Article  Google Scholar 

  34. Wojciechowski S, Wiackiewicz M, Krolczyk GM (2018) Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling. Meas J Int Meas Confed 129:686–694. https://doi.org/10.1016/j.measurement.2018.07.058

    Article  Google Scholar 

  35. Arruda ÉM, de Paiva AP, Brandão LC, Ferreira JR (2019) Robust optimisation of surface roughness of AISI H13 hardened steel in the finishing milling using ball nose end mills. Precis Eng 60:194–214. https://doi.org/10.1016/j.precisioneng.2019.07.013

    Article  Google Scholar 

  36. Natarajan SCU, Sundaram SK (2015) Modeling and optimization of tool wear in a passively damped boring process using response surface methodology. Trans Indian Inst Metals 69:1443–1448. https://doi.org/10.1007/s12666-015-0707-5

    Article  Google Scholar 

  37. Yuvaraju BAG, Nanda BK (2018) Prediction of vibration amplitude and surface roughness in boring operation by response surface methodology. Mater Today Proc 5:6906–6915. https://doi.org/10.1016/j.matpr.2017.11.352

    Article  Google Scholar 

  38. Ratnam C, Adarsha Kumar K, Murthy BSN, Venkata Rao K (2018) An experimental study on boring of Inconel 718 and multi response optimization of machining parameters using response surface methodology. Mater Today Proc 5:27123–27129. https://doi.org/10.1016/j.matpr.2018.09.020

    Article  Google Scholar 

  39. Dhiman G, Singh KK, Slowik A, Chang V, Yildiz AR, Kaur A, Garg M (2020) EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-020-01189-1

  40. Vining GG, Myers RH (1990) Combining Taguchi and response surface philosophies: a dual response approach. J Qual Technol 22:38–45

    Article  Google Scholar 

  41. Shoemaker AC, Tsui KL, Wu CJ (1991) Economical experimentation methods for robust design. Technometrics 33:415–427. https://doi.org/10.2307/1269414

    Article  Google Scholar 

  42. Kshirsagar MP, Kalamkar VR (2020) Application of multi-response robust parameter design for performance optimization of a hybrid draft biomass cook stove. Renew Energy 153:1127–1139. https://doi.org/10.1016/j.renene.2020.02.049

    Article  Google Scholar 

  43. Zhang J, Hou J, Feng Z, Zeng Q, Song Q, Guan S, Zhang Z, Li Z (2020) Robust modeling, analysis and optimization of entrained flow co-gasification of petcoke with coal using combined array design. Int J Hydrog Energy 45:294–308. https://doi.org/10.1016/j.ijhydene.2019.10.153

    Article  Google Scholar 

  44. Lacerda ASM, Batista LS (2019) KDT-MOEA: a multiobjective optimization framework based on K-D trees. Inf Sci (Ny) 503:200–218. https://doi.org/10.1016/j.ins.2019.07.011

    Article  MathSciNet  Google Scholar 

  45. Stylianou C, Andreou AS (2016) Investigating the impact of developer productivity, task interdependence type and communication overhead in a multi-objective optimization approach for software project planning. Adv Eng Softw 98:79–96. https://doi.org/10.1016/j.advengsoft.2016.04.001

    Article  Google Scholar 

  46. Logist F, Van Impe J (2012) Novel insights for multi-objective optimisation in engineering using normal boundary intersection and (enhanced) normalised normal constraint:417–431. https://doi.org/10.1007/s00158-011-0698-8

  47. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  48. Coello Coello CA, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proc 2002 Congr Evol Comput CEC 2002, vol 2, pp 1051–1056. https://doi.org/10.1109/CEC.2002.1004388

    Chapter  Google Scholar 

  49. Raquel CR, Naval PC (2005) An effective use of crowding distance in multiobjective particle swarm optimization. In: GECCO 2005 - Genet Evol Comput Conf, pp 257–264. https://doi.org/10.1145/1068009.1068047

    Chapter  Google Scholar 

  50. Bin X, Nan C, Huajun C (2010) An integrated method of multi-objective optimization for complex mechanical structure. Adv Eng Softw 41:277–285. https://doi.org/10.1016/j.advengsoft.2009.07.004

    Article  MATH  Google Scholar 

  51. Jiang P, Wang C, Zhou Q, Shao X, Shu L, Li X (2016) Optimization of laser welding process parameters of stainless steel 316L using FEM, kriging and NSGA-II. Adv Eng Softw 99:147–160. https://doi.org/10.1016/j.advengsoft.2016.06.006

    Article  Google Scholar 

  52. Wei X, Wang X, Chen S (2020) Research on parameterization and optimization procedure of low-Reynolds-number airfoils based on genetic algorithm and Bezier curve. Adv Eng Softw 149:102864. https://doi.org/10.1016/j.advengsoft.2020.102864

    Article  Google Scholar 

  53. Zhao W, Luan Z, Wang C (2018) Parameter optimization design of vehicle E-HHPS system based on an improved MOPSO algorithm. Adv Eng Softw 123:51–61. https://doi.org/10.1016/j.advengsoft.2018.05.011

    Article  Google Scholar 

  54. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/

  55. Peterson RA, Cavanaugh JE (2019) Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J Appl Stat 47:1–16. https://doi.org/10.1080/02664763.2019.1630372

    Article  MathSciNet  Google Scholar 

  56. Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47:1287–1294. https://doi.org/10.2307/1911963

    Article  MathSciNet  MATH  Google Scholar 

  57. Hebbali A (2018) Olsrr: tools for building OLS regression models. R package version 0.5, 1. https://cran.r-project.org/web/packages/olsrr/index.html

  58. Yildiz AR (2019) A novel hybrid whale–Nelder–Mead algorithm for optimization of design and manufacturing problems. Int J Adv Manuf Technol 105:5091–5104. https://doi.org/10.1007/s00170-019-04532-1

    Article  Google Scholar 

  59. Affenzeller M, Wagner S, Winkler S, Beham A (2009) Genetic algorithms and genetic programming: modern concepts and practical applications. Crc Press, Boca Raton, FL

    Book  Google Scholar 

  60. Scrucca L (2013) GA: A package for genetic algorithms in R. J Stat Softw 53:1–37. https://doi.org/10.18637/jss.v053.i04

    Article  Google Scholar 

  61. Ching-Shih T (2013) nsga2R: Elitist non-dominated sorting genetic algorithm based on R. R package version 1.0. https://CRAN.Rproject.org/package=nsga2R

  62. Naval P (2013) Mopsocd: MOPSOCD: Multi-objective particle swarm optimization with crowding distance. R package version 0.5, 1. https://cran.rproject.org/web/packages/mopsocd/index.html

  63. Bringmann K, Friedrich T (2013) Approximation quality of the hypervolume indicator. Artif Intell 195:265–290. https://doi.org/10.1016/j.artint.2012.09.005

    Article  MathSciNet  MATH  Google Scholar 

  64. Mersmann O (2012) emoa: Evolutionary multiobjective optimization algorithms. R package version 0.5-0. https://cran.rproject.org/web/packages/emoa/index.html

  65. Ganesh A, Bonda Y, Nanda BK, Jonnalagadda S (2020) Vibration signature based stability studies in internal turning with a wavelet denoising preprocessor. Measurement 154:107520. https://doi.org/10.1016/j.measurement.2020.107520

    Article  Google Scholar 

  66. Sanchis J, Martínez M, Blasco X, Salcedo JV (2008) A new perspective on multiobjective optimization by enhanced normalized normal constraint method. Struct Multidiscip Optim 36:537–546. https://doi.org/10.1007/s00158-007-0185-4

    Article  Google Scholar 

  67. Messac A, Mattson, CA (2004) Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA J 42:2101-2111. https://arc.aiaa.org/doi/abs/10.2514/1.8977

Download references

Funding

This research was supported by the Brazilian National Council for Scientific and Technological Development (CNPq), the Coordination of Superior Level Staff Improvement (CAPES), and the Research Support Foundation of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Contributions

Jéssica Tito Vieira: conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, roles/writing - original draft, writing - review and editing.

Robson Bruno Dutra Pereira: formal analysis, methodology, software, validation, visualization, roles/writing - original draft, writing - review and editing.

Samuel Alves Freitas: data curation, investigation, validation, roles/writing - original draft, writing - review and editing.

Carlos Henrique Lauro: investigation, methodology, project administration, validation, roles/writing - original draft, writing - review and editing.

Lincoln Cardoso Brandão: conceptualization, data curation, funding acquisition, investigation, project administration, resources, supervision, validation, roles/writing - original draft, writing - review and editing.

Corresponding author

Correspondence to Robson Bruno Dutra Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Code availability

R scripts can be provided after being requested to the corresponding author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, J.T., Pereira, R.B.D., Freitas, S.A. et al. Multi-objective robust evolutionary optimization of the boring process of AISI 4130 steel. Int J Adv Manuf Technol 112, 1745–1765 (2021). https://doi.org/10.1007/s00170-020-06455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06455-8

Keywords

Navigation