Skip to main content

Advertisement

Log in

Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this comprehensive investigation, we evaluate the mechanical properties and the effect of drilling parameters (spindle speed, 355, 710 and 1400 rev/min; feed rate, 50, 108 and 190 mm/min; and the tool diameter, 5, 7 and 10 mm) as a function of the cutting process on the delamination factor when drilling jute fabrics reinforced epoxy matrix biocomposites. The study is carried out using different drill geometries and material (HSS_TiN, HSS and brad and spur drill bits). The design of experiment is developed by the application analysis of variance (ANOVA). The response surface methodology (RSM) and artificial neural networks (ANN) are applied to validate the results obtained during the experiment and to predict the behaviour of the structure under any cutting condition. Result analysis showed the superiority of the ANN model over the RSM model, while the feed rate had a significant contribution on spindle speed and diameter. The optimum conditions obtained for the Fd factor were a feed rate of 51 mm/min, a spindle speed of 1160 rev/min and a drilling diameter of 5 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Baley C, Le Duigou A, Bourmaud A, Davies P (2012) Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites. Compos Part A Appl Sci Manuf 43:1226–1233. https://doi.org/10.1016/j.compositesa.2012.03.005

    Article  Google Scholar 

  2. Le Duigou A, Baley C (2014) Coupled micromechanical analysis and life cycle assessment as an integrated tool for natural fibre composites development. J Clean Prod 83:61–69. https://doi.org/10.1016/j.jclepro.2014.07.027

    Article  Google Scholar 

  3. Diabor E, Funkenbusch P, Kaufmann EE (2019) Characterization of cassava fiber of different genotypes as a potential reinforcement biomaterial for possible tissue engineering composite scaffold application. Fibers Polym 20:217–228. https://doi.org/10.1007/s12221-019-8702-9

    Article  Google Scholar 

  4. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000-2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  5. Amroune S, Belaadi A, Bourchak M et al Statistical and experimental analysis of the mechanical properties of flax fibers. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1775751

  6. Belaadi A, Bourchak M, Aouici H (2016) Mechanical properties of vegetal yarn: statistical approach. Compos Part B Eng 106:139–153. https://doi.org/10.1016/j.compositesb.2016.09.033

    Article  Google Scholar 

  7. Belaadi A, Amroune S, Bourchak M (2019) Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibres: Weibull statistics. Int J Adv Manuf Technol. 106:1753–1774. https://doi.org/10.1007/s00170-019-04628-8

    Article  Google Scholar 

  8. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Composites Part B: Engineering 101:31–45. https://doi.org/10.1016/j.compositesb.2016.06.055

  9. Dutta S, Kim NK, Das R, Bhattacharyya D (2019) Effects of sample orientation on the fire reaction properties of natural fibre composites. Compos Part B Eng 157:195–206. https://doi.org/10.1016/j.compositesb.2018.08.118

    Article  Google Scholar 

  10. Belaadi A, Bezazi A, Maache M, Scarpa F (2014) Fatigue in sisal fiber reinforced polyester composites: hysteresis and energy dissipation. Procedia Eng 74:325–328. https://doi.org/10.1016/j.proeng.2014.06.272

    Article  Google Scholar 

  11. Belaadi A, Bezazi A, Bourchak M, Scarpa F (2013) Tensile static and fatigue behaviour of sisal fibres. Mater Des 46:76–83. https://doi.org/10.1016/j.matdes.2012.09.048

    Article  Google Scholar 

  12. Cherief M, Belaadi A, Bouakba M, Bourchak M, Meddour I (2020) Behaviour of lignocellulosic fibre-reinforced cellular core under low-velocity impact loading: Taguchi method. Int J Adv Manuf Technol. 108:223–233. https://doi.org/10.1007/s00170-020-05393-9

    Article  Google Scholar 

  13. Amroune S, Bezazi A, Belaadi A et al (2015) Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Compos Part A Appl Sci Manuf 71. https://doi.org/10.1016/j.compositesa.2014.12.011

  14. Dobah Y, Bourchak M, Bezazi A, Belaadi A, Scarpa F (2016) Multi-axial mechanical characterization of jute fiber/polyester composite materials. Compos Part B Eng 90:450–456. https://doi.org/10.1016/j.compositesb.2015.10.030

    Article  Google Scholar 

  15. Boumaaza M, Belaadi A, Bourchak M (2020) The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: optimization using RSM. J Nat Fibers.:1–21. https://doi.org/10.1080/15440478.2020.1724236

  16. Belaadi A, Laouici H, Bourchak M (2020) Mechanical and drilling performance of short jute fibre-reinforced polymer biocomposites: statistical approach. Int J Adv Manuf Technol 106:1989–2006. https://doi.org/10.1007/s00170-019-04761-4

    Article  Google Scholar 

  17. Bezazi A, Belaadi A, Bourchak M, Scarpa F, Boba K (2014) Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Compos Part B Eng 66:194–203. https://doi.org/10.1016/j.compositesb.2014.05.014

    Article  Google Scholar 

  18. Jaouadi M, M’sahli S, Sakli F (2009) Optimization and characterization of pulp extracted from the Agave Americana L. Fibers. Text Res J 79:110–120. https://doi.org/10.1177/0040517508090781

    Article  Google Scholar 

  19. Bedjaoui A, Belaadi A, Amroune AMB (2019) Impact of surface treatment of flax fibers on tensile mechanical properties accompanied by a statistical study. https://doi.org/10.30880/ijie.00.00.0000.00.0000

  20. Béakou A, Ntenga R, Lepetit J, Atéba JA, Ayina LO (2008) Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Compos Part A Appl Sci Manuf 39:67–74. https://doi.org/10.1016/j.compositesa.2007.09.002

    Article  Google Scholar 

  21. Kumar R, Sivaganesan S, Senthamaraikannan P, Saravanakumar SS, Khan A, Ajith Arul Daniel S, Loganathan L (2020) Characterization of new cellulosic fiber from the bark of Acacia nilotica L. Plant. J Nat Fibers 00:1–10. https://doi.org/10.1080/15440478.2020.1738305

    Article  Google Scholar 

  22. Geng D, Liu Y, Shao Z, Lu Z, Cai J, Li X, Jiang X, Zhang D (2019) Delamination formation, evaluation and suppression during drilling of composite laminates: a review. Compos Struct 216:168–186. https://doi.org/10.1016/j.compstruct.2019.02.099

    Article  Google Scholar 

  23. Zhang H, Zhu P, Liu Z, Qi S, Zhu Y (2020) Research on prediction method of mechanical properties of open-hole laminated plain woven CFRP composites considering drilling-induced delamination damage. Mech Adv Mater Struct 0:1–16. https://doi.org/10.1080/15376494.2020.1745969

    Article  Google Scholar 

  24. Chaitanya S, Singh I (2018) Ecofriendly treatment of aloe vera fibers for PLA based green composites. Int J Precis Eng Manuf - Green Technol 5:143–150. https://doi.org/10.1007/s40684-018-0015-8

    Article  Google Scholar 

  25. Feito N, Díaz-Álvarez J, López-Puente J, Miguelez MH (2018) Experimental and numerical analysis of step drill bit performance when drilling woven CFRPs. Compos Struct 184:1147–1155. https://doi.org/10.1016/j.compstruct.2017.10.061

    Article  Google Scholar 

  26. Fernández-Pérez J, Cantero JL, Díaz-Álvarez J, Miguélez MH (2017) Influence of cutting parameters on tool wear and hole quality in composite aerospace components drilling. Compos Struct 178:157–161. https://doi.org/10.1016/j.compstruct.2017.06.043

    Article  Google Scholar 

  27. Feito N, Diaz-Álvarez J, López-Puente J, Miguelez MH (2016a) Numerical analysis of the influence of tool wear and special cutting geometry when drilling woven CFRPs. Compos Struct 138:285–294. https://doi.org/10.1016/j.compstruct.2015.11.065

    Article  Google Scholar 

  28. Feito N, Diaz-Álvarez A, Cantero JL, Rodríguez-Millán M, Miguélez H (2016b) Experimental analysis of special tool geometries when drilling woven and multidirectional CFRPs. J Reinf Plast Compos 35:33–55. https://doi.org/10.1177/0731684415612931

    Article  Google Scholar 

  29. Díaz-Álvarez J, Olmedo A, Santiuste C, Miguélez MH (2014) Theoretical estimation of thermal effects in drilling of woven carbon fiber composite. Materials (Basel) 7:4442–4454. https://doi.org/10.3390/ma7064442

    Article  Google Scholar 

  30. Díaz-Álvarez A, Rodríguez-Millán M, Díaz-Álvarez J, Miguélez MH (2018) Experimental analysis of drilling induced damage in aramid composites. Compos Struct 202:1136–1144. https://doi.org/10.1016/j.compstruct.2018.05.068

    Article  Google Scholar 

  31. Bayraktar Ş, Turgut Y (2020) Determination of delamination in drilling of carbon fiber reinforced carbon matrix composites/Al 6013-T651 stacks. Measurement 154:107493. https://doi.org/10.1016/j.measurement.2020.107493

    Article  Google Scholar 

  32. De Olveira LÁ, Dos Santos JC, Panzera TH et al (2018) Investigations on short coir fibre-reinforced composites via full factorial design. Polym Polym Compos 26:391–399. https://doi.org/10.1177/0967391118806144

    Article  Google Scholar 

  33. Azuan SAS, Juraidi JM, Muhamad WMW (2012) Evaluation of delamination in drilling rice husk reinforced polyester composites. Appl Mech Mater 232:106–110. https://doi.org/10.4028/www.scientific.net/AMM.232.106

    Article  Google Scholar 

  34. Aravindh S, Umanath K (2015) Delamination in drilling of natural fibre reinforced polymer composites produced by compression moulding. Appl Mech Mater 767:796–800. https://doi.org/10.4028/www.scientific.net/AMM.766-767.796

    Article  Google Scholar 

  35. Sridharan V, Muthukrishnan N (2013) Optimization of machinability of polyester/modified jute fabric composite using grey relational analysis (GRA). Procedia Eng 64:1003–1012. https://doi.org/10.1016/j.proeng.2013.09.177

    Article  Google Scholar 

  36. Sridharan V, Raja T, Muthukrishnan N (2016) Study of the effect of matrix, fibre treatment and graphene on delamination by drilling jute/epoxy nanohybrid composite. Arab J Sci Eng 41:10–14. https://doi.org/10.1007/s13369-015-2005-2

    Article  Google Scholar 

  37. Yallew TB, Kumar P, Singh I (2015) A study about hole making in woven jute fabric-reinforced polymer composites. Proc IMechE Part L J Mater Des Appl 230:1–11. https://doi.org/10.1177/1464420715587750

    Article  Google Scholar 

  38. Monteiro SN, Terrones LAH, D’Almeida JRM (2008) Mechanical performance of coir fiber/polyester composites. Polym Test 27:591–595. https://doi.org/10.1016/j.polymertesting.2008.03.003

    Article  Google Scholar 

  39. Jayabal S, Natarajan U (2011) Drilling analysis of coir – fibre-reinforced polyester composites. Bull Mater Sci 34:1563–1567. https://doi.org/10.1007/s12034-011-0359-y

    Article  Google Scholar 

  40. Bajpai PK, Singh I (2013) Drilling behavior of sisal fiber-reinforced polypropylene composite laminates. J Reinf Plast Compos 32:1569–1576. https://doi.org/10.1177/0731684413492866

    Article  Google Scholar 

  41. Bajpai PK, Debnath K, Singh I (2015) Hole making in natural polylactic acid laminates: an experimental investigation. J Thermoplast Compos Mater 30:1–17. https://doi.org/10.1177/0892705715575094

    Article  Google Scholar 

  42. Debnath K, Sisodia M, Kumar A, Singh I (2016) Damage-free hole making in fiber-reinforced composites: an innovative tool design approach. Mater Manuf Process 31:1400–1408. https://doi.org/10.1080/10426914.2016.1140191

    Article  Google Scholar 

  43. Debnath K, Singh I, Dvivedi A (2014) Drilling characteristics of sisal fiber-reinforced epoxy and polypropylene composites. Mater Manuf Process 29:1401–1409. https://doi.org/10.1080/10426914.2014.941870

    Article  Google Scholar 

  44. Debnath K, Singh I, Dvivedi A (2017) On the analysis of force during secondary processing of natural fiber-reinforced composite laminates. Polym Compos 38:164–174. https://doi.org/10.1002/pc.23572

    Article  Google Scholar 

  45. Chaudhary V, Gohil PP (2016) Investigations on drilling of bidirectional cotton polyester composite. Mater Manuf Process 31:960–968. https://doi.org/10.1080/10426914.2015.1059444

    Article  Google Scholar 

  46. Venkateshwaran N, ElayaPerumal A (2013) Hole quality evaluation of natural fiber composite using image analysis technique. J Reinf Plast Compos 32:1188–1197. https://doi.org/10.1177/0731684413486847

    Article  Google Scholar 

  47. Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2010) Influence of alkali-treated fibers on the mechanical properties and machinability of roselle and sisal fiber hybrid polyester composite. Polym Compos 31:723–731. https://doi.org/10.1002/pc.20853

    Article  Google Scholar 

  48. Ramesh M, Sri Ananda Atreya T, Aswin US et al (2014a) Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Eng 97:563–572. https://doi.org/10.1016/j.proeng.2014.12.284

    Article  Google Scholar 

  49. Ismail SO, Dhakal HN, Dimla E, Beaugrand J, Popov I (2016) Effects of drilling parameters and aspect ratios on delamination and surface roughness of lignocellulosic HFRP composite laminates. J Appl Polym Sci 133. https://doi.org/10.1002/app.42879

  50. Abilash N, Sivapragash M (2016) Optimizing the delamination failure in bamboo fiber reinforced polyester composite. J King Saud Univ - Eng Sci 28:92–102. https://doi.org/10.1016/j.jksues.2013.09.004

    Article  Google Scholar 

  51. Díaz-Álvarez A, Díaz-Álvarez J, Santiuste C, Miguélez MH (2019) Experimental and numerical analysis of the influence of drill point angle when drilling biocomposites. Compos Struct 209:700–709. https://doi.org/10.1016/j.compstruct.2018.11.018

    Article  Google Scholar 

  52. Babu GD, Babu KS, Gowd BUM (2012) Effects of drilling parameters on delamination of hemp fiber reinforced composites. Int J Mech Eng Res Dev 2:1–8

    Google Scholar 

  53. Azuan SAS (2013) Effects of drilling parameters on delamination of coconut meat husk reinforced polyester composites. Adv Environ Biol 7:1097–1100. https://doi.org/10.1007/978-3-642-38345-8_6

    Article  Google Scholar 

  54. Roy Choudhury M, Srinivas MS, Debnath K (2018) Experimental investigations on drilling of lignocellulosic fiber reinforced composite laminates. J Manuf Process 34:51–61. https://doi.org/10.1016/j.jmapro.2018.05.032

    Article  Google Scholar 

  55. Chen W-C (1997) Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. Int J Mach Tools Manuf 37:1097–1108. https://doi.org/10.1016/S0890-6955(96)00095-8

    Article  Google Scholar 

  56. Chandramohan D, Marimuthu K (2011) Drilling of natural fiber particle reinforced polymer composite material. Int J Adv Eng Res Stud I:134–145

    Google Scholar 

  57. Durão LMP, Gonçalves DJS, Tavares JMRS, de Albuquerque VHC, Panzera TH, Silva LJ, Vieira AA, Baptista APM (2013) Drilling delamination outcomes on glass and sisal reinforced plastics. Mater Sci Forum 730–732:301–306. https://doi.org/10.4028/www.scientific.net/MSF.730-732.301

    Article  Google Scholar 

  58. Saaidia A, Bezazi A, Belbah A, Bouchelaghem H, Scarpa F, Amirouche S (2017) Mechano-physical properties and statistical design of jute yarns. Meas J Int Meas Confed 111:284–294. https://doi.org/10.1016/j.measurement.2017.07.054

    Article  Google Scholar 

  59. Standard A (2010) D2256/D2256M—1081, “Standard test method for tensile properties of yarns by the single—strand method”. ASTM International, West Conshohocken. https://doi.org/10.1520/D2256_D2256M—10E01

    Book  Google Scholar 

  60. Standard A (2014) D3039/D3039M-14. Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, Pennsylvania

  61. ASTM D (2010) D790-10. Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, Pennsylvania

  62. Rezghi Maleki H, Hamedi M, Kubouchi M, Arao Y (2019) Experimental study on drilling of jute fiber reinforced polymer composites. J Compos Mater 53:283–295

    Article  Google Scholar 

  63. Ramesh M, Palanikumar K, Reddy KH (2014b) Experimental investigation and analysis of machining characteristics in drilling hybrid glass-sisal-jute fiber reinforced polymer composites. In: 5th international & 26th all india manufacturing technology, design and research conference AIMTDR

  64. Vinayagamoorthy R, Rajeswari N, Karthikeyan S (2015a) Investigations of damages during drilling of natural sandwich composites. In: Applied mechanics and materials. Trans Tech Publ, pp 812–817

  65. Vinayagamoorthy R, Rajeswari N, Sivanarasimha S, Balasubramanian K (2015b) Fuzzy based optimization of thrust force and torque during drilling of natural hybrid composites. In: Applied Mechanics and Materials. Trans Tech Publ, pp 265–269

  66. Ramnath BV, Sharavanan S, Jeykrishnan J (2017) Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p 12003

  67. Kim JT, Netravali AN (2011) Development of aligned-hemp yarn-reinforced green composites with soy protein resin: effect of pH on mechanical and interfacial properties. Compos Sci Technol 71:541–547. https://doi.org/10.1016/j.compscitech.2011.01.004

    Article  Google Scholar 

  68. Blanchard J, Sobey AJ, Blake JIR (2016) Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Compos Part B Eng 84:228–235. https://doi.org/10.1016/j.compositesb.2015.08.086

  69. Codispoti R, Oliveira D V., Olivito RS, Lourenço P B, Fangueiro R (2015) Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. Compos Part B Eng 77:74–83. https://doi.org/10.1016/j.compositesb.2015.03.021

  70. Ma H, Li Y, Wang D (2014) Investigations of fiber twist on the mechanical properties of sisal fiber yarns and their composites. J Reinf Plast Compos 33:687–696. https://doi.org/10.1177/0731684413520187

  71. Munikenche Gowda T, Naidu ACB, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos Part A Appl Sci Manuf 30:277–284. https://doi.org/10.1016/S1359-835X(98)00157-2

    Article  Google Scholar 

  72. Sever K, Sarikanat M, Seki Y, Erkan G, Erdoğan ÜH, Erden S (2012) Surface treatments of jute fabric: the influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Ind Crops Prod 35:22–30. https://doi.org/10.1016/j.indcrop.2011.05.020

    Article  Google Scholar 

  73. Jawaid M, Abdul Khalil HPS, Abu Bakar A (2011) Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Mater Sci Eng A 528:5190–5195. https://doi.org/10.1016/j.msea.2011.03.047

  74. Laranjeira E, de Carvalho LH, de L. Silva SM, D’Almeida JRM (2006) Influence of fiber orientation on the mechanical properties of polyester/jute composites. J Reinf Plast Compos 25:1269–1278. https://doi.org/10.1177/0731684406060577

    Article  Google Scholar 

  75. MIR A, Zitoune R, Collombet F, Bezzazi B (2009) Study of mechanical and thermomechanical properties of jute/epoxy composite laminate. J Reinf Plast Compos 29:1669–1680. https://doi.org/10.1177/0731684409341672

    Article  Google Scholar 

  76. Mishra V, Biswas S (2013) Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Eng 51:561–566. https://doi.org/10.1016/j.proeng.2013.01.079

    Article  Google Scholar 

  77. Majumder A (2010) Comparison of ANN with RSM in predicting surface roughness with respect to process parameters in Nd:YAG laser drilling. Int J Eng Sci Technol 2:5175–5186

    Google Scholar 

  78. Karnik SR, Gaitonde VN, Davim JP (2008) A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling. Int J Adv Manuf Technol 38:868–883

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge (la Direction Générale de la Recherche Scientifique et du Développement Technologique, Algerie) DGRSDT for their support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Belaadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaadi, A., Boumaaza, M., Amroune, S. et al. Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. Int J Adv Manuf Technol 111, 2073–2094 (2020). https://doi.org/10.1007/s00170-020-06217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06217-6

Keywords

Navigation