Skip to main content
Log in

Ball-burnishing factors affecting residual stress of AISI 8620 steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Ball burnishing is a superfinishing operation performed to improve surface and subsurface integrity. In the present study, a model was developed to confirm that the ball burnishing of AISI 8620 steel affects its microstructures, roughness, and residual stress. As a part of the process, the influence of different parameters on the residual stress surface in the axial direction was investigated. Samples were prepared by heat treatment and turning. The ball-burnishing process was performed, and the improvements on the surface and subsurface integrity were found to be significant. Residual stress after ball burnishing was found to be affected by pressure and feed rate to a statistically significant extent. Stress was found to be in the form of compression. The steel displayed significant improvements in surface roughness and residual stress following burnishing. The linear regression models derived from the data for the relationship between burnishing factors and residual stress offer R2 values of 80.88%. Results suggest that the ball-burnishing process enhanced the properties of AISI 8620 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Loh NH, Tam SC (1988) Effects of ball burnishing parameters on surface finish—a literature survey and discussion. Precis Eng 10:215–220. https://doi.org/10.1016/0141-6359(88)90056-6

    Article  Google Scholar 

  2. Grzesik W, Krzysztof Z (2012) Modification of surface finish produced by hard turning using superfinishing and burnishing operations. J Mater Process Technol 212:315–322. https://doi.org/10.1016/j.jmatprotec.2011.09.017

    Article  Google Scholar 

  3. Davim JP (ed) (2008) Machining of hard materials. Springer, London, pp v–vi. https://doi.org/10.1007/978-1-84800-213-5

    Book  Google Scholar 

  4. Grzesik W (2017) Advanced machining processes of metallic materials, 2nd edn. Elsevier, Amsterdam, pp 285–397. https://doi.org/10.1016/b978-0-444-63711-6.00015-6

    Book  Google Scholar 

  5. Revankar GD, Shetty R, Rao SS, Gaitonde VN (2014) Analysis of surface roughness and hardness in ball burnishing of titanium alloy. Measurement 58:256–268. https://doi.org/10.1016/j.measurement.2014.08.043

    Article  Google Scholar 

  6. Okada M, Shinya M, Matsubara H, Kozuka H, Tachiya H, Asakawa N, Otsu M (2017) Development and characterization of diamond tip burnishing with a rotary tool. J Mater Process Technol 244:106–115. https://doi.org/10.1016/j.jmatprotec.2017.01.020

    Article  Google Scholar 

  7. Hassan AM (1997) The effects of ball- and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. J Mater Process Technol 72:385–391. https://doi.org/10.1016/S0924-0136(97)00199-4

    Article  Google Scholar 

  8. Hassan AM, Al-Jalilb HF, Ebieda AA (1998) Burnishing force and number of ball passes for the optimum surface finish of brass components. J Mater Process Technol 83:176–179. https://doi.org/10.1016/S0924-0136(98)00058-2

    Article  Google Scholar 

  9. Konefal K, Korzynski M, Byczkowska Z, Korzynska K (2013) Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing. J Mater Process Technol 213:1997–2004. https://doi.org/10.1016/j.jmatprotec.2013.05.021

    Article  Google Scholar 

  10. El-Axir MH, Ibrahim AA (2005) Some surface characteristics due to center rest ball burnishing. J Mater Process Technol 167:47–53. https://doi.org/10.1016/j.jmatprotec.2004.09.078

    Article  Google Scholar 

  11. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60:603–626. https://doi.org/10.1016/j.cirp.2011.05.002

    Article  Google Scholar 

  12. Korzynski M, Lubas J, Swirad S, Dudek K (2011) Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. J Mater Process Technol 211:84–94. https://doi.org/10.1016/j.jmatprotec.2010.08.029

    Article  Google Scholar 

  13. Korzynski M, Pacana A (2010) Centreless burnishing and influence of its parameters on machining effects. J Mater Process Technol 210:1217–1223. https://doi.org/10.1016/j.jmatprotec.2010.03.008

    Article  Google Scholar 

  14. Valiorgue F, Zmelty V, Dumas M, Chomienne V, Verdu C, Lefebvre F, Rech J (2018) Influence of residual stress profile and surface microstructure on fatigue life of a 15-5PH. Procedia Eng 213:623–629. https://doi.org/10.1016/j.proeng.2018.02.058

    Article  Google Scholar 

  15. Zhang T, Bugtai N, Marinescu ID (2015) Burnishing of aerospace alloy: a theoretical–experimental approach. J Manuf Syst 37:472–478. https://doi.org/10.1016/j.jmsy.2014.11.004

    Article  Google Scholar 

  16. De Lacalle LN, Lamikiz A, Muñoa J, Sánchez JA (2005) Quality improvement of ball-end milled sculptured surfaces by ball burnishing. Int J Mach Tool Manu 15:1659–1668. https://doi.org/10.1016/j.ijmachtools.2005.03.007

    Article  Google Scholar 

  17. Mhaede M (2012) Influence of surface treatments on surface layer properties: fatigue and corrosion fatigue performance of AA7075 T73. MATER DESIGN 41:61–66. https://doi.org/10.1016/j.matdes.2012.04.056

    Article  Google Scholar 

  18. Pu Z, Song GL, Yang S, Outeiro JC, Dillon OW, Puleo DA, Jawahir IS (2012) Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corros Sci 57:192–201. https://doi.org/10.1016/j.corsci.2011.12.018

    Article  Google Scholar 

  19. Abrão AM, Denkena B, Köhler J, Breidenstein B, Mörke T (2014) The influence of deep rolling on the surface integrity of AISI 1060 high carbon steel. Procedia CIRP 13:31–36. https://doi.org/10.1016/j.procir.2014.04.006

    Article  Google Scholar 

  20. Kermouche G, Rech J, Hamdi H, Bergheau JM (2010) On the residual stress field induced by a scratching round abrasive grain. Wear 269:86–92. https://doi.org/10.1016/j.wear.2010.03.012

    Article  Google Scholar 

  21. Daniel C, Wood FS, Lucas JM (1981) Fitting equations to data: computer analysis of multifactor data. Technometrics 23:203–204. https://doi.org/10.2307/1268046

    Article  Google Scholar 

  22. Sagbas A (2011) Analysis and optimization of surface roughness in the ball burnishing process using response surface methodology and desirability function. Adv Eng Softw 42:992–998. https://doi.org/10.1016/j.advengsoft.2011.05.021

    Article  Google Scholar 

  23. Rodríguez A, López de Lacalle LN, Celaya A, Lamikiz A, Albizuri J (2011) Surface improvement of shafts by the deep ball-burnishing technique. Surf Coat Technol 206:2817–2824. https://doi.org/10.1016/j.surfcoat.2011.11.045

    Article  Google Scholar 

  24. Yen YC, Sartkulvanich P, Altan T (2005) Finite element modeling of roller burnishing process. CIRP Ann 54:237–240. https://doi.org/10.1016/S0007-8506(07)60092-4

    Article  Google Scholar 

  25. Alberto S (2016) Ball-burnishing process: state of the art of a technology in development. Universidad de Guanajuato, Dissertation

    Google Scholar 

  26. Taha NK, Youssef HA, Bayoumi AE, Y, Mashal A-H (1994) The effect of cutting parameters on residual stress and average flank pressure on 11L17 steel and 2024 aluminum alloy during milling operation. MEATIP1, Assiut University, Asyut

  27. Mahajan D, Tajane R (2013) A review on ball burnishing process. Int J Sci Res Publ 3:2250–3153

    Google Scholar 

  28. Travieso-Rodríguez JA, Gómez-Gras G, Dessein G, et-al. (2015) Effects of a ball-burnishing process assisted by vibrations in G10380 steel specimens. Int J Adv Manuf Technol 81:1757–1765. https://doi.org/10.1007/s00170-015-7255-3

    Article  Google Scholar 

  29. Liu Y, Wang L, Wang D (2011) Finite element modeling of ultrasonic surface rolling process. J. Mater Process Technol 211:2106–2113

    Article  Google Scholar 

  30. Le Roux S, Cutard T, Lours P (2015) Quantitative assessment of the interfacial roughness in multi-layered materials using image analysis: application to oxidation in ceramic-based materials. J Eur Ceram Soc 35:1063–1079. https://doi.org/10.1016/j.jeurceramsoc.2014.09.027

    Article  Google Scholar 

  31. Lawrence J, Waugh D (2015) Laser surface engineering: processes and applications. Woodhead, Glossop

    Google Scholar 

  32. Klocke F, Liermann J (1998) Roller burnishing of hard turned surfaces. Int J Mach Tool Manu 38:419–423. https://doi.org/10.1016/S0890-6955(97)00085-0

    Article  Google Scholar 

  33. Mezlini S, Mzal S, Sghaier S, Braham C, Kapsa PH (2013) Effect of a combined machining/burnishing tool on the roughness and mechanical properties. Lubr Sci 26:175–187. https://doi.org/10.1002/ls.1239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulaziz J. Alshareef.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshareef, A.J., Marinescu, I.D., Basudan, I.M. et al. Ball-burnishing factors affecting residual stress of AISI 8620 steel. Int J Adv Manuf Technol 107, 1387–1397 (2020). https://doi.org/10.1007/s00170-020-05119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05119-x

Keywords

Navigation