Skip to main content
Log in

Ambient and non-ambient temperature depth-sensing indentation of Mg-Sm2O3 nanocomposites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnesium matrix nanocomposites (Mg-Sm2O3 nanocomposites in the present study), containing nanosize reinforcements within the magnesium or magnesium alloy matrix, are a group of energy-saving novel material with enhanced strength-to-weight ratio. However, in order to scale up the applications of the magnesium nanocomposites toward industrial dimensions, detailed response of the materials at ambient and elevated temperatures must be established. Having said this, the primary objective of this paper is to obtain an in-depth understanding of small-scale property–microstructure-composition correlation at ambient (298 K) temperature up to 473 K using a depth sensing nanoindentation testing approach as well as advanced microstructural characterization. Mg-Sm2O3 nanocomposites with 0.5, 1.0, and 1.5 vol% Sm2O3 were compared against pure Mg. The properties measured are reduced modulus, elastic modulus, hardness, indentation creep rate, indentation creep exponent, thermal activation volume, as well as indentation size effect as a function of temperature. Pure Mg and Mg-1.0 Sm2O3 nanocomposite provided the least and the greatest creep resistance, respectively. This is attributed to the presence of thermally stable Sm2O3 nanoparticles which can effectively produce dislocation pile-ups and dislocation tangling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. These nanosize particles are insoluble in the matrix therefore raising temperature does not coarsen or dissolve them. This feature directly contributes to the enhanced strengthening of the material not only at ambient but also at elevated temperatures.

References

  1. Pollock TM (2010) Weight loss with magnesium alloys. Science 328:986–987

    Google Scholar 

  2. Lu K (2010) The future of metals. Science 328:319–320

    Google Scholar 

  3. Nie JF, Zhu YM, Liu JZ, Fang XY (2013) Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340:957–960

    Google Scholar 

  4. Erbel R, di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Böse D, Koolen J, Lüscher TF, Weissman N, Waksman R, PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) Investigators (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875

    Google Scholar 

  5. Knochel P (2009) Nat Chem 1:740

    Google Scholar 

  6. Nie J-F (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43:3891–3939

    Google Scholar 

  7. Goh CS, Wei J, Lee LC, Gupta M (2006) Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A 423:153–156

    Google Scholar 

  8. Hassan SF, Gupta M (2006) Effect of length scale of Al2O3 particulates on microstructural and tensile properties of elemental mg. Mater Sci Eng A 425:22–27

    Google Scholar 

  9. Dieringa H (2011) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306

    Google Scholar 

  10. Ghasemi A, Penther D, Kamrani S (2018) Mater Charact 142:137–143

    Google Scholar 

  11. Mirza FA, Chen DL (2015) A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites. Materials 8:5138–5153. https://doi.org/10.3390/ma8085138

    Article  Google Scholar 

  12. Ferkel H, Mordike BL (2001) Mater Sci Eng A 298:193–199

    Google Scholar 

  13. Katsarou L, Mounib M, Lefebvre W, Vorozhtsov S, Pavese M, Badini C, Molina-Aldareguia JM, Jimenez CC, Prado MTP, Dieringa H (2016) Materials Science & Engineering A 659:84–92

    Google Scholar 

  14. Sourav G, Mondal AK (2018) Mater Sci Eng A 718:377–389

    Google Scholar 

  15. Oliver WC, Pharr GM (1992) J Mater Res 7:1564–1583

    Google Scholar 

  16. Wang CL, Lai YH, Huang JC, Nieh TG (2010) Scr Mater 62:175–178

    Google Scholar 

  17. Su CJ, Herbert E, Sohn S, Manna JAL, Oliver WC, Pharr GM, Mech Phys J (2013) Sol. 61:517–536

    Google Scholar 

  18. Liu X, Zhang Q, Zhao X, Yang X, Luo L (2016) Mater Sci Eng A 676:73–79

    Google Scholar 

  19. Haghshenas M, Islam R, Wang Y, Cheng YT, Gupta M (2018) J Compos Mater. https://doi.org/10.1177/0021998318808358

    Google Scholar 

  20. Haghshenas M, Wang Y, Cheng Y-T, Gupta M (2018) Mater Sci Eng A 716:63–71

    Google Scholar 

  21. Sankaranarayanan S, Gupta M (2015) Powder Metall 58:183–192

    Google Scholar 

  22. Kujur MS, Mallick A, Manakari V, Parande G, Tun KS, Gupta M (2017) Metals 7:357. https://doi.org/10.3390/met7090357

    Article  Google Scholar 

  23. Fei W, Kewei X (2004) Mater Lett 58:2345–2349

    Google Scholar 

  24. Zhu X, Liu X, Zeng F, Pan F (2010) Mater Lett 64:53–56

    Google Scholar 

  25. Shen BL, Itoi T, Yamasaki T, Ogino Y (2000) Scr Mater 42:893–898

    Google Scholar 

  26. Li WB, Henshall JL, Hooper RM, Easterling KE (1991) Acta Mater 39:3099–3110

    Google Scholar 

  27. Sargent PM, Ashby M (1992) Indentation creep. Mater Sci Technol 8:594–601

    Google Scholar 

  28. Mayo M, Siegel R, Narayanasamy A, Nix W (1990) J Mater Res 5:1073–1082

    Google Scholar 

  29. Mahmudi R, Geranmayeh AR, Khanbareh H, Jahangiri N (2009) Mater Des 30:574–580

    Google Scholar 

  30. Mukherjee AK, Bird JE, Dorn JE (1969) Trans ASM 62:155–179

    Google Scholar 

  31. Reed-Hill RE, Abbaschian R, Abbaschian R (1973) Physical metallurgy principles. Cengage Learning, Stamford, CT, USA

    Google Scholar 

  32. Robson JD, Henry DT, Davis B (2009) Acta Mater 57:2739–2747

    Google Scholar 

  33. Parande G, Manakari V, Wakeel S, Kujur MS, Gupta M (2018) Metals 8(12):1014. https://doi.org/10.3390/met8121014

    Article  Google Scholar 

  34. Gupta M, Ling M (2011) Magnesium technology. Wiley-VCH, Weinheim

    Google Scholar 

  35. Hassan SF, Gupta M (2005) Mater Sci Eng 392:163–168

    Google Scholar 

  36. Goh CS, Wei J, Lee LC, Gupta M (2007) Acta Mater 55:5115–5121

    Google Scholar 

  37. Tun KS, Jayaramanavar P, Nguyen QB, Chan J, Kwok R, Gupta M (2011) Mater Sci Technol 28:582–588

    Google Scholar 

  38. Zhong XL, Wong WLE, Gupta M (2007) Acta Mater 55:6338–6344

    Google Scholar 

  39. Haghshenas M, Gupta M (2019) Def Technol. https://doi.org/10.1016/j.dt.2018.08.008

    Google Scholar 

  40. Saboori A, Padovano E, Pavese M, Badini C (2018) Materials (Basel) 11(1):27. https://doi.org/10.3390/ma11010027

    Article  Google Scholar 

  41. Nie KB, Wang XJ, Wu K, Hu XS, Zheng MY (2012) Mater Sci Eng A 540:123–129

    Google Scholar 

  42. Musil J, Kunc F, Zeman H, Polakova H (2002) Surf Coat Technol 154:304–313

    Google Scholar 

  43. Maja ME, Falodun OE, Obadele BA, Oke SR, Olubambi PA (2018) Ceramics International 44:4419–4425

    Google Scholar 

  44. Greer JR, Oliver WC, Nix ED (2005) Acta Mater 23:1821–1830

    Google Scholar 

  45. Nix WD, Gao HJ (1998) Mech Phys Solids 46:411–425

    Google Scholar 

  46. Oliver F, Trenkle JC, Schuh CA (2010) J Mater Res 25(7):1225–1229

    Google Scholar 

  47. Prasitthipayong A, Vachhani SJ, Tumey SJ, Minor AM, Hosemann P (2018) Acta Mater 144:896–904

    Google Scholar 

  48. Sherby OD, Burke PM (1968) Prog Mater Sci 13:325–389

    Google Scholar 

  49. Mohamed FA, Park KT, Lavernia EJ (1992) Mater Sci Eng A 150:21–35

    Google Scholar 

  50. Weertman J (1957) J. Appl. Phys. 28(3):362–364

    Google Scholar 

  51. Weertman J (1957) Appl Phys 28(4):1185–1189

    Google Scholar 

  52. Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K (2005) Mater Sci Eng A 407:53–61

    Google Scholar 

  53. Kumar H, Chaudhari GP (2014) Mater Sci Eng A607:435–444

    Google Scholar 

  54. Lu S, Foo AQ, Wang S, Chen Z (2017) J Alloys Compd 729:498–506

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haghshenas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghshenas, M., Muhammad, M., Hasannaeimi, V. et al. Ambient and non-ambient temperature depth-sensing indentation of Mg-Sm2O3 nanocomposites. Int J Adv Manuf Technol 105, 2947–2956 (2019). https://doi.org/10.1007/s00170-019-04583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04583-4

Keywords

Navigation