Skip to main content
Log in

Review on strategies for geometric accuracy improvement in incremental sheet forming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Incremental sheet forming (ISF) is a promising flexible manufacturing technology for producing sheet components in small batches with no need of high-cost dedicated dies or tooling. A large number of studies with different strategies have been conducted and reported to improve the achievable geometric accuracy in ISF in the past decades, however, the low geometric accuracy still remains the major issue of ISF, which significantly limits the industrial application of this flexible forming technology. This paper aims to present a comprehensive review on the strategies for improving the forming accuracy of ISF to capture the current research status and development in the geometric accuracy improvement in ISF. The reviewed strategies were systematically divided into several different categories, and the representative studies in each category were described and discussed in detail. This work will provide a helpful research guideline for the researchers in the fields of ISF and sheet forming to find better solutions for addressing the poor accuracy problem, and furthermore, boosting the industrial take-up of ISF in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ishikawa T, Mori K-i, Amino M, Mizoguchi M, Terauchi Y, Maki T (2014) 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress Center, Nagoya, Japan. Current status of “dieless” Amino’s incremental forming. Procedia Engineering 81:54–62. https://doi.org/10.1016/j.proeng.2014.09.128

    Article  Google Scholar 

  2. Cao J, Xia ZC, Gutowski TG, Roth J (2012) A hybrid forming system: electrical-assisted double side incremental forming (EADSIF) process for enhanced formability and geometrical flexibility

  3. Filice L, Fratini L, Micari F (2002) Analysis of material formability in incremental forming. CIRP Ann Manuf Technol 51(1):199–202. https://doi.org/10.1016/S0007-8506(07)61499-1

    Article  Google Scholar 

  4. Kim YH, Park JJ (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130–131(0):42–46. https://doi.org/10.1016/S0924-0136(02)00788-4

    Article  Google Scholar 

  5. Hagan E, Jeswiet J (2003) A review of conventional and modern single-point sheet metal forming methods. Proc Inst Mech Eng B J Eng Manuf 217(2):213–225. https://doi.org/10.1243/095440503321148858

    Article  Google Scholar 

  6. Echrif SBM, Hrairi M (2011) Research and progress in incremental sheet forming processes. Mater Manuf Process 26(11):1404–1414. https://doi.org/10.1080/10426914.2010.544817

    Article  Google Scholar 

  7. Rous P (1960) Machines for shaping sheet metal. Google Patents

  8. Leszak E (1967) Apparatus and process for incremental dieless forming. Google Patents

  9. Henrard C (2009) Numerical simulations of the single point incremental forming process

  10. Park J-J, Kim Y-H (2003) Fundamental studies on the incremental sheet metal forming technique. J Mater Process Technol 140(1–3):447–453. https://doi.org/10.1016/S0924-0136(03)00768-4

    Article  Google Scholar 

  11. Allwood JM, King GPF, Duflou J (2005) A structured search for applications of the incremental sheet-forming process by product segmentation. Proc Inst Mech Eng B J Eng Manuf 219(2):239–244. https://doi.org/10.1243/095440505x8145

    Article  Google Scholar 

  12. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. Cirp Ann-Manuf Techn 54(2):623–649

    Article  Google Scholar 

  13. Altan T, Tekkaya AE (2012) Sheet metal forming—processes and applications. ASM International

  14. Nimbalkar D, Nandedkar V (2013) Review of incremental forming of sheet metal components

  15. Reddy NV, Lingam R, Cao J (2014) Incremental metal forming processes in manufacturing. In: Nee AYC (ed) Handbook of manufacturing engineering and technology. Springer, London, pp 411–452. https://doi.org/10.1007/978-1-4471-4670-4_45

    Google Scholar 

  16. Li Y, Chen X, Liu Z, Sun J, Li F, Li J, Zhao G (2017) A review on the recent development of incremental sheet-forming process. Int J Adv Manuf Technol 92(5):2439–2462. https://doi.org/10.1007/s00170-017-0251-z

    Article  Google Scholar 

  17. Duflou JR, Habraken A-M, Cao J, Malhotra R, Bambach M, Adams D, Vanhove H, Mohammadi A, Jeswiet J (2017) Single point incremental forming: state-of-the-art and prospects. Int J Mater Form 11:743–773. https://doi.org/10.1007/s12289-017-1387-y

    Article  Google Scholar 

  18. Lu H, Kearney M, Li Y, Liu S, Daniel WT, Meehan P (2015) Model predictive control of incremental sheet forming for geometric accuracy improvement. Int J Adv Manuf Technol 82(1–14):1781–1794. https://doi.org/10.1007/s00170-015-7431-5

    Article  Google Scholar 

  19. Lu H, Kearney M, Liu S, Daniel WJT, Meehan PA (2016) Two-directional toolpath correction in single-point incremental forming using model predictive control. Int J Adv Manuf Technol 91:1–16. https://doi.org/10.1007/s00170-016-9672-3

    Article  Google Scholar 

  20. Lu H, Kearney M, Wang C, Liu S, Meehan PA (2017) Part accuracy improvement in two point incremental forming with a partial die using a model predictive control algorithm. Precis Eng 49:179–188. https://doi.org/10.1016/j.precisioneng.2017.02.006

    Article  Google Scholar 

  21. Li Y, Lu H, Daniel WT, Meehan P (2015) Investigation and optimization of deformation energy and geometric accuracy in the incremental sheet forming process using response surface methodology. Int J Adv Manuf Technol 79(9–12):2041–2055. https://doi.org/10.1007/s00170-015-6986-5

    Article  Google Scholar 

  22. Lu H, Li Y, Liu Z, Liu S, Meehan PA (2014) Study on step depth for part accuracy improvement in incremental sheet forming process. Adv Mater Res (939)

  23. Bahloul R, Arfa H, BelHadjSalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74(1–4):163–185. https://doi.org/10.1007/s00170-014-5975-4

    Article  Google Scholar 

  24. Filice L, Ambrogio G, Gaudioso M (2013) Optimised tool-path design to reduce thinning in incremental sheet forming process. Int J Mater Form 6(1):173–178. https://doi.org/10.1007/s12289-011-1065-4

    Article  Google Scholar 

  25. Malhotra R, Ren F, Reddy NV, Kiridena V, Cao J, Cedric Xia Z (2011) Improvement of geometric accuracy in incremental forming by using a squeezing toolpath strategy with two forming tools. J Manuf Sci Eng 133(6):061019–061019. https://doi.org/10.1115/1.4005179

    Article  Google Scholar 

  26. Malhotra R, Cao J, Beltran M, Xu D, Magargee J, Kiridena V, Xia ZC (2012) Accumulative-DSIF strategy for enhancing process capabilities in incremental forming. CIRP Ann Manuf Technol 61(1):251–254. https://doi.org/10.1016/j.cirp.2012.03.093

    Article  Google Scholar 

  27. Adams DW (2014) Improvements on single point incremental forming through electrically assisted forming, contact area prediction and tool development. ProQuest, UMI Dissertations Publishing,

  28. Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Prod Eng 3(2):145–156. https://doi.org/10.1007/s11740-009-0150-8

    Article  Google Scholar 

  29. Duflou JR, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken AM (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. Cirp Ann-Manuf Techn 57(1):253–256. https://doi.org/10.1016/j.cirp.2008.03.030

    Article  Google Scholar 

  30. Singh A, Agrawal A (2016) Comparison of deforming forces, residual stresses and geometrical accuracy of deformation machining with conventional bending and forming. J Mater Process Technol 234:259–271. https://doi.org/10.1016/j.jmatprotec.2016.03.032

    Article  Google Scholar 

  31. Ambrogio G, Filice L, Gagliardi F (2012) Improving industrial suitability of incremental sheet forming process. Int J Adv Manuf Technol 58(9–12):941–947. https://doi.org/10.1007/s00170-011-3448-6

    Article  Google Scholar 

  32. Skjoedt M, Silva MB, Martins PAF, Bay N (2010) Strategies and limits in multi-stage single-point incremental forming. J Strain Anal Eng Des 45(1):33–44. https://doi.org/10.1243/03093247jsa574

    Article  Google Scholar 

  33. Xu DK, Lu B, Cao TT, Zhang H, Chen J, Long H, Cao J (2016) Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mater Design 92:268–280. https://doi.org/10.1016/j.matdes.2015.12.009

    Article  Google Scholar 

  34. Ambrogio G, De Napoli L, Filice L, Gagliardi F, Muzzupappa M (2005) Application of incremental forming process for high customised medical product manufacturing. J Mater Process Technol 162–163(0):156–162. https://doi.org/10.1016/j.jmatprotec.2005.02.148

    Article  Google Scholar 

  35. Kalo A, Newsum MJ (2014) An investigation of robotic incremental sheet metal forming as a method for prototyping parametric architectural skins. In: Mc Gee W, Ponce de Leon M (eds) Robotic fabrication in architecture, art and design 2014. Springer International Publishing, Cham, pp 33–49. https://doi.org/10.1007/978-3-319-04663-1_3

    Chapter  Google Scholar 

  36. Ames JP (2008) Systematische Untersuchung der Beeinflussung des Werkstoffflusses bei der inkrementellen Blechumformung mit CNC-Werkzeugmaschinen. Shaker

  37. Essa K, Hartley P (2011) An assessment of various process strategies for improving precision in single point incremental forming. Int J Mater Form 4(4):401–412. https://doi.org/10.1007/s12289-010-1004-9

    Article  Google Scholar 

  38. Allwood JM, Braun D, Music O (2010) The effect of partially cut-out blanks on geometric accuracy in incremental sheet forming. J Mater Process Tech 210(11):1501–1510. https://doi.org/10.1016/j.jmatprotec.2010.04.008

    Article  Google Scholar 

  39. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191(1–3):390–395

    Article  Google Scholar 

  40. Ambrogio G, Napoli L, Filice L (2009) A novel approach based on multiple back-drawing incremental forming to reduce geometry deviation. Int J Mater Form 2(1):9–12. https://doi.org/10.1007/s12289-009-0498-5

    Article  Google Scholar 

  41. Iseki H, Kato K, Sakamoto S (1989) Flexible and incremental sheet metal forming using a spherical roller. J Process Technol 62:41–44

    Google Scholar 

  42. Matsubara S (1994) Incremental backward bulge forming of a sheet metal with a hemispherical head tool-a study of a numerical control forming system II. J-Jpn Soc Technol Plasticity 35:1311–1311

    Google Scholar 

  43. Attanasio A, Ceretti E, Mazzoni L, Giardini C (2007) Use of TPIF or SPIF for prototype productions: an actual case. AIP Conference Proceedings 907(1):163–168. https://doi.org/10.1063/1.2729505

    Article  Google Scholar 

  44. Attanasio A, Ceretti E, Giardini C, Mazzoni L (2008) Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization. J Mater Process Technol 197(1–3):59–67. https://doi.org/10.1016/j.jmatprotec.2007.05.053

    Article  Google Scholar 

  45. Amino H, Lu Y, Maki T, Osawa S, Fukuda K, Dieless NC (2002) forming, prototype of automotive service parts. In: Proceedings of the 2nd International Conference on Rapid Prototyping and Manufacturing. ICRPM, Beijing

    Google Scholar 

  46. Aoyama S, Amino H, Lu Y, Matsubara S (2000) Apparatus for dieless forming plate materials. Europäisches Brevet EP0970764

  47. Allwood J, Houghton N, Jackson K (2005) The design of an incremental sheet forming machine. In: Adv Mater Res. Trans Tech Publ, pp 471–478, 6-8

  48. Vihtonen L, Puzik A, Katajarinne T (2008) Comparing two robot assisted incremental forming methods: incremental forming by pressing and incremental hammering. Int J Mater Form 1(1):1207–1210. https://doi.org/10.1007/s12289-008-0158-1

    Article  Google Scholar 

  49. Meier H, Smukala V, Dewald O, Zhang J (2007) Two point incremental forming with two moving forming tools. In: Key Eng Mater. Trans Tech Publ, pp 599–605, 344

  50. Meier H, Buff B, Laurischkat R, Smukala V (2009) Increasing the part accuracy in dieless robot-based incremental sheet metal forming. CIRP Ann Manuf Technol 58(1):233–238. https://doi.org/10.1016/j.cirp.2009.03.056

    Article  Google Scholar 

  51. Cao J, Huang Y, Reddy N, Malhotra R, Wang Y (2008) Incremental sheet metal forming: advances and challenges. In: Proceedings of International Conference on Technology of Plasticity (ICTP 2008). Gyeongju, Korea

    Google Scholar 

  52. Wang Y, Huang Y, Cao J, Reddy NV (2008) Experimental study on a new method of double side incremental forming. In: ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. American Society of Mechanical Engineers, pp 601–607, 387, 615

  53. Araghi BT, Manco GL, Bambach M, Hirt G (2009) Investigation into a new hybrid forming process: incremental sheet forming combined with stretch forming. Cirp Ann-Manuf Techn 58(1):225–228

    Article  Google Scholar 

  54. Taleb Araghi B, Göttmann A, Bambach M, Hirt G, Bergweiler G, Diettrich J, Steiners M, Saeed-Akbari A (2011) Review on the development of a hybrid incremental sheet forming system for small batch sizes and individualized production. Prod Eng 5(4):393–404. https://doi.org/10.1007/s11740-011-0325-y

    Article  Google Scholar 

  55. Hirt G, Bambach M, Bleck W, Prahl U, Stollenwerk J (2015) The development of incremental sheet forming from flexible forming to fully integrated production of sheet metal parts. In: Brecher C (ed) Advances in production technology. Lecture notes in production engineering. Springer International Publishing, pp 117–129. doi:https://doi.org/10.1007/978-3-319-12304-2_9

  56. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276. https://doi.org/10.1016/j.cirp.2007.05.063

    Article  Google Scholar 

  57. Fan G, Gao L, Hussain G, Wu Z (2008) Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf 48(15):1688–1692. https://doi.org/10.1016/j.ijmachtools.2008.07.010

    Article  Google Scholar 

  58. Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin L (2013) Electric hot incremental forming of low carbon steel sheet: accuracy improvement. Int J Adv Manuf Technol 68(1):241–247. https://doi.org/10.1007/s00170-013-4724-4

    Article  Google Scholar 

  59. Cao J, Xia Z, Gutowski T, Roth J (2012) A hybrid forming system: electrical-assisted double side incremental forming (EADSIF) process for enhanced formability and geometrical flexibility. Northwestern University, Document ID: DE-EE0003460

  60. Altan T, Tekkaya AE Sheet metal forming—processes and applications. ASM International

  61. Skjoedt M, Bay N, Endelt B, Ingarao G (2008) Multi stage strategies for single point incremental forming of a cup. Int J Mater Form 1(1):1199–1202. https://doi.org/10.1007/s12289-008-0156-3

    Article  Google Scholar 

  62. Kitazawa K, Wakabayashi A, Murata K, Yaejima K (1996) Metal-flow phenomena in computerized numerically controlled incremental stretch-expanding of aluminum sheets. J Jpn Inst Light Metals 46(2):65–70

    Article  Google Scholar 

  63. Kitazawa K, Nakane M (1997) Hemi-ellipsoidal stretch-expanding of aluminum sheet by CNC incremental forming process with two path method. J-Jpn Inst Light Metals 47:440–445

    Article  Google Scholar 

  64. Kim TJ, Yang DY (2000) Improvement of formability for the incremental sheet metal forming process. Int J Mech Sci 42(7):1271–1286

    Article  MATH  Google Scholar 

  65. Kitazawa K, Nakajima A (1999) Cylindrical incremental drawing of sheet metals by CNC incremental forming process. In: 6th international conference on advanced technologies of plasticity. Nürnberg. pp 1495–1500

  66. Hirt G, Ames J, Bambach M, Kopp R, Kopp R (2004) Forming strategies and process modelling for CNC incremental sheet forming. CIRP Ann Manuf Technol 53(1):203–206. https://doi.org/10.1016/S0007-8506(07)60679-9

    Article  Google Scholar 

  67. Verbert J, Belkassem B, Henrard C, Habraken AM, Gu J, Sol H, Lauwers B, Duflou JR (2008) Multi-Step toolpath approach to overcome forming limitations in single point incremental forming. Int J Mater Form 1:1203–1206. https://doi.org/10.1007/s12289-008-0157-2

    Article  Google Scholar 

  68. Liu ZB, Daniel WJT, Li YL, Liu S, Meehan PA (2014) Multi-pass deformation design for incremental sheet forming: analytical modeling, finite element analysis and experimental validation. J Mater Process Technol 214(3):620–634. https://doi.org/10.1016/j.jmatprotec.2013.11.010

    Article  Google Scholar 

  69. Malhotra R, Bhattacharya A, Kumar A, Reddy NV, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Ann Manuf Technol 60(1):323–326. https://doi.org/10.1016/j.cirp.2011.03.145

    Article  Google Scholar 

  70. Junchao L, Junjian S, Bin W (2013) A multipass incremental sheet forming strategy of a car taillight bracket. Int J Adv Manuf Technol 69:1–8. https://doi.org/10.1007/s00170-013-5179-3

    Article  Google Scholar 

  71. Wang H, Duncan S (2011) Constrained model predictive control of an incremental sheet forming process. In: Control applications (CCA), 2011 IEEE International Conference on, 28-30 Sept. 2011. pp 1288–1293. doi:https://doi.org/10.1109/CCA.2011.6044466

  72. Behera AK, Lauwers B, Duflou JR (2014) Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques. Int J Mater Form 8(4):517–532. https://doi.org/10.1007/s12289-014-1174-y

    Article  Google Scholar 

  73. Malhotra R, Reddy NV, Cao JA (2010) Automatic 3D spiral toolpath generation for single point incremental forming. J Manuf Sci E-T Asme 132(6):061003

    Article  Google Scholar 

  74. Behera AK, Verbert J, Lauwers B, Duflou JR (2013) Tool path compensation strategies for single point incremental sheet forming using multivariate adaptive regression splines. Comput Aided Des 45(3):575–590. https://doi.org/10.1016/j.cad.2012.10.045

    Article  Google Scholar 

  75. Behera AK, Lauwers B, Duflou JR (2014) Tool path generation framework for accurate manufacture of complex 3D sheet metal parts using single point incremental forming. Comput Ind 65(4):563–584. https://doi.org/10.1016/j.compind.2014.01.002

    Article  Google Scholar 

  76. Ambrogio G, Costantino I, De Napoli L, Filice L, Fratini L, Muzzupappa M (2004) Influence of some relevant process parameters on the dimensional accuracy in incremental forming: a numerical and experimental investigation. J Mater Process Technol 153–154(0):501–507. https://doi.org/10.1016/j.jmatprotec.2004.04.139

    Article  Google Scholar 

  77. Ambrogio G, Filice L, De Napoli L, Muzzupappa M (2005) A simple approach for reducing profile diverting in a single point incremental forming process. Proc Inst Mech Eng B J Eng Manuf 219(11):823–830. https://doi.org/10.1243/095440505x32797

    Article  Google Scholar 

  78. Attanasio A, Ceretti E, Giardini C (2006) Optimization of tool path in two points incremental forming. J Mater Process Technol 177(1–3):409–412. https://doi.org/10.1016/j.jmatprotec.2006.04.047

    Article  Google Scholar 

  79. Zettler J, Rezai H, Hirt G (2008) Springback compensation for incremental sheet metal forming applications. In: 7th LS-Dyna Forum, Bamberg, Germany, September

  80. Lu B, Chen J, Ou H, Cao J (2013) Feature-based tool path generation approach for incremental sheet forming process. J Mater Process Technol 213(7):1221–1233

    Article  Google Scholar 

  81. Lingam R, Prakash O, Belk JH, Reddy NV (2017) Automatic feature recognition and tool path strategies for enhancing accuracy in double sided incremental forming. Int J Adv Manuf Technol 88(5):1639–1655. https://doi.org/10.1007/s00170-016-8880-1

    Article  Google Scholar 

  82. Allwood JM, Music O, Raithathna A, Duncan SR (2009) Closed-loop feedback control of product properties in flexible metal forming processes with mobile tools. CIRP Ann Manuf Technol 58(1):287–290. https://doi.org/10.1016/j.cirp.2009.03.065

    Article  Google Scholar 

  83. Wang H, Duncan S (2011) Optimization of tool trajectory for incremental sheet forming using closed loop control. In: Automation science and engineering (CASE), 2011 IEEE Conference on, 24–27 Aug. 2011. pp 779–784. doi:https://doi.org/10.1109/CASE.2011.6042410

  84. Han F, Mo J-h, Gong P, Li M (2011) Method of closed loop springback compensation for incremental sheet forming process. J Cent S Univ Technol 18(5):1509–1517. https://doi.org/10.1007/s11771-011-0867-3

    Article  Google Scholar 

  85. Fu Z, Mo J, Han F, Gong P (2012) Tool path correction algorithm for single-point incremental forming of sheet metal. Int J Adv Manuf Technol 64(9–12):1239–1248. https://doi.org/10.1007/s00170-012-4082-7

    Google Scholar 

  86. Fiorentino A, Giardini C, Ceretti E (2015) Application of artificial cognitive system to incremental sheet forming machine tools for part precision improvement. Precis Eng 39(0):167–172. https://doi.org/10.1016/j.precisioneng.2014.08.005

    Article  Google Scholar 

  87. Fiorentino A, Feriti GC, Giardini C, Ceretti E (2015) Part precision improvement in incremental sheet forming of not axisymmetric parts using an artificial cognitive system. J Manuf Syst 35(0):215–222. https://doi.org/10.1016/j.jmsy.2015.02.003

    Article  Google Scholar 

  88. Fiorentino A, Feriti GC, Ceretti E, Giardini C (2018) Capability of iterative learning control and influence of the material properties on the improvement of the geometrical accuracy in incremental sheet forming process. Int J Mater Form 11(1):125–134. https://doi.org/10.1007/s12289-016-1335-2

    Article  Google Scholar 

  89. Camacho EF, Alba CB (2013) Model predictive control. Springer Science & Business Media

  90. Bao-Cang D, Baocang D (2010) Modern predictive control. CRC press

  91. Wang L (2009) Model predictive control system design and implementation using MATLAB®. springer

  92. Petek A, Kuzman K, Suhač B (2009) Autonomous on-line system for fracture identification at incremental sheet forming. CIRP Ann Manuf Technol 58(1):283–286. https://doi.org/10.1016/j.cirp.2009.03.092

    Article  Google Scholar 

  93. Filice L, Ambrogio G, Micari F (2006) On-line control of single point incremental forming operations through punch force monitoring. CIRP Ann Manuf Technol 55(1):245–248. https://doi.org/10.1016/s0007-8506(07)60408-9

    Article  Google Scholar 

  94. Ambrogio G, Filice L, Micari F (2006) A force measuring based strategy for failure prevention in incremental forming. J Mater Process Technol 177(1–3):413–416. https://doi.org/10.1016/j.jmatprotec.2006.04.076

    Article  Google Scholar 

  95. Fiorentino A (2013) Force-based failure criterion in incremental sheet forming. Int J Adv Manuf Technol 68(1–4):557–563. https://doi.org/10.1007/s00170-013-4777-4

    Article  Google Scholar 

  96. Li Y, Daniel WJT, Liu Z, Lu H, Meehan PA (2015) Deformation mechanics and efficient force prediction in single point incremental forming. J Mater Process Technol 221:100–111. https://doi.org/10.1016/j.jmatprotec.2015.02.009

    Article  Google Scholar 

  97. Li Y, Liu Z, Lu H, Daniel WJT, Liu S, Meehan P (2014) Efficient force prediction for incremental sheet forming and experimental validation. Int J Adv Manuf Technol 73(1–4):571–587. https://doi.org/10.1007/s00170-014-5665-2

    Article  Google Scholar 

  98. Radu C (2011) Effects of process parameters on the quality of parts processed by single point incremental forming. Int J Mod Manuf Technol 3(2):91–96

    Google Scholar 

  99. Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 87(1):479–499. https://doi.org/10.1007/s00170-016-8426-6

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the support from the Scientific Research Start-up Fund from Central South University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenhao Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Liu, H. & Wang, C. Review on strategies for geometric accuracy improvement in incremental sheet forming. Int J Adv Manuf Technol 102, 3381–3417 (2019). https://doi.org/10.1007/s00170-019-03348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03348-3

Keywords

Navigation