Skip to main content
Log in

Nanometer-scale chip formation and surface integrity of pure titanium in diamond turning

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Titanium is attracting great attentions in aerospace and medical applications where high surface quality plays an important role in improving the product performance. For developing nano-precision machining technology for titanium, clarification of the nanometer-scale chip formation mechanism is essential. In this study, the surface formation mechanism of pure titanium in ultraprecision cutting tests using single-crystal diamond tools was investigated. The results demonstrated that decreasing undeformed chip thickness from the micrometer scale down to the nanometer scale had profound impacts on the shear angle, specific cutting force, and chip morphology. Chip tearing phenomenon occurred when undeformed chip thickness is smaller than a critical value (~ 100 nm), which significantly affected the chip morphology and machined surface integrity. In nanometer-scale cutting, tool feed mark is no longer a major reason of surface roughness; instead, material plucking, debris, scratches, and chip adhesion influenced the surface integrity. The high pressure generated in the nanometer-scale cutting caused a hardness increase in workpiece material and promoted workpiece material adhesion to the tool surface, as well as tool wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer R, Welsch G, Collings EW (1993) Materials properties handbook: titanium alloys. ASM international

  2. Davim JP (2014) Machining of titanium alloys. doi: https://doi.org/10.1007/978-3-662-43902-9

  3. Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68:262–274. https://doi.org/10.1016/S0924-0136(96)00030-1

    Article  Google Scholar 

  4. Machado AR, Wallbank J (1990) Machining of titanium and its alloys—a review. Proc Inst Mech Eng Part B J Eng Manuf 204:53–60. https://doi.org/10.1243/PIME_PROC_1990_204_047_02

    Article  Google Scholar 

  5. Matthew J, Donachie J (2012) Titanium a technical guide, 2nd ed. ASM Int doi: https://doi.org/10.5772/1844

  6. Yang X, Richard Liu C (1999) Machining titanium and its alloys. Mach Sci Technol 3:107–139. https://doi.org/10.1080/10940349908945686

    Article  Google Scholar 

  7. Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568. https://doi.org/10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  8. Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int J Mach Tools Manuf 48:275–288. https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

  9. Molinari A, Soldani X, Miguelez MH (2013) Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J Mech Phys Solids 61:2331–2359. https://doi.org/10.1016/j.jmps.2013.05.006

    Article  Google Scholar 

  10. Komanduri R, Von Turkovich BF (1981) New observations on the mechanism of chip formation when machining titanium alloys. Wear 69:179–188. https://doi.org/10.1016/0043-1648(81)90242-8

    Article  Google Scholar 

  11. Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76:15–34. https://doi.org/10.1016/0043-1648(82)90113-2

    Article  Google Scholar 

  12. Ezugwu EO, Bonney J, Yamane Y (2003) An overview of the machinability of aeroengine alloys. J Mater Process Technol 134:233–253. https://doi.org/10.1016/S0924-0136(02)01042-7

    Article  Google Scholar 

  13. Hasçalik A, Çaydaş U (2008) Optimization of turning parameters for surface roughness and tool life based on the Taguchi method. Int J Adv Manuf Technol 38:896–903. https://doi.org/10.1007/s00170-007-1147-0

    Article  Google Scholar 

  14. Ramesh S, Karunamoorthy L, Palanikumar K (2008) Fuzzy modeling and analysis of machining parameters in machining titanium alloy. Mater Manuf Process 23:439–447. https://doi.org/10.1080/10426910801976676

    Article  Google Scholar 

  15. Chauhan SR, Dass K (2012) Optimization of machining parameters in turning of titanium (grade-5) alloy using response surface methodology. Mater Manuf Process 27:531–537. https://doi.org/10.1080/10426914.2011.593236

    Article  Google Scholar 

  16. Ribeiro MV, Moreira MRV, Ferreira JR (2003) Optimization of titanium alloy (6Al-4V) machining. J Mater Process Technol 143–144:458–463. https://doi.org/10.1016/S0924-0136(03)00457-6

    Article  Google Scholar 

  17. Che-Haron CH (2001) Tool life and surface integrity in turning titanium alloy. J Mater Process Technol 118:231–237. https://doi.org/10.1016/S0924-0136(01)00926-8

    Article  Google Scholar 

  18. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  19. Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti-6% Al-4% V. J Mater Process Technol 166:188–192. https://doi.org/10.1016/j.jmatprotec.2004.08.012

    Article  Google Scholar 

  20. Ginting A, Nouari M (2009) Surface integrity of dry machined titanium alloys. Int J Mach Tools Manuf 49:325–332. https://doi.org/10.1016/j.ijmachtools.2008.10.011

    Article  Google Scholar 

  21. Zareena AR, Veldhuis SC (2012) Tool wear mechanisms and tool life enhancement in ultraprecision machining of titanium. J Mater Process Technol 212:560–570. https://doi.org/10.1016/j.jmatprotec.2011.10.014

    Article  Google Scholar 

  22. Schneider F, Lohkamp R, Sousa FJP et al (2014) Analysis of the surface integrity in ultraprecision cutting of cp-titanium by investigating the chip formation. Procedia CIRP 13:55–60. https://doi.org/10.1016/j.procir.2014.04.010

    Article  Google Scholar 

  23. Schneider F, Bischof R, Kirsch B et al (2016) Investigation of chip formation and surface integrity when micro-cutting cp-titanium with ultra-fine grain cemented carbide. Procedia CIRP 45:115–118. https://doi.org/10.1016/j.procir.2016.02.257

    Article  Google Scholar 

  24. Ruibin X, Wu H (2016) Study on cutting mechanism of Ti6Al4V in ultraprecision machining. Int J Adv Manuf Technol 86:1311–1317. https://doi.org/10.1007/s00170-015-8304-7

    Article  Google Scholar 

  25. Colafemina JP, Jasinevicius RG, Duduch JG (2007) Surface integrity of ultraprecision diamond turned Ti (commercially pure) and Ti alloy (Ti-6Al-4V). Proc Inst Mech Eng Part B J Eng Manuf 221:999–1006. https://doi.org/10.1243/09544054JEM798

    Article  Google Scholar 

  26. Liu K, Li XP, Rahman M et al (2007) A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers. Int J Adv Manuf Technol 32:631–637. https://doi.org/10.1007/s00170-005-0364-7

    Article  Google Scholar 

  27. Heidari M, Yan J (2017) Ultraprecision surface flattening of porous silicon by diamond turning. Precis Eng 49:262–277. https://doi.org/10.1016/j.precisioneng.2017.02.015

    Article  Google Scholar 

  28. Lalwani DI, Mehta NK, Jain PK (2008) Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. J Mater Process Technol 206:167–179. https://doi.org/10.1016/j.jmatprotec.2007.12.018

    Article  Google Scholar 

  29. de Oliveira FB, Rodrigues AR, Coelho RT, de Souza AF (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tools Manuf 89:39–54. https://doi.org/10.1016/j.ijmachtools.2014.11.001

    Article  Google Scholar 

  30. Rao BC, Shin YC (1999) A comprehensive dynamic cutting force model for chatter prediction in turning. Int J Mach Tools Manuf 39:1631–1654. https://doi.org/10.1016/S0890-6955(99)00007-3

    Article  Google Scholar 

  31. Chae J, Park SS, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46:313–332. https://doi.org/10.1016/j.ijmachtools.2005.05.015

    Article  Google Scholar 

  32. Klocke F (2011) Manufacturing processes 1: cutting. doi: https://doi.org/10.1007/978-3-642-11979-8

  33. Grzesik W (2008) Advanced machining processes of metallic materials: theory, modelling and applications. Elsevier

  34. Liu X, DeVor RE, Kapoor SG, Ehmann KF (2004) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng 126:666. https://doi.org/10.1115/1.1813469

    Article  Google Scholar 

  35. Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnology 3:6–9. https://doi.org/10.1088/0957-4484/3/1/002

    Article  Google Scholar 

  36. Lai X, Li H, Li C et al (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48:1–14. https://doi.org/10.1016/j.ijmachtools.2007.08.011

    Article  Google Scholar 

  37. Malekian M, Mostofa MG, Park SS, Jun MBG (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Technol 212:553–559. https://doi.org/10.1016/j.jmatprotec.2011.05.022

    Article  Google Scholar 

  38. Zhanqiang L, Zhenyu S, Yi W (2013) Definition and determination of the minimum uncut chip thickness of microcutting. Int J Adv Manuf Technol 69:1219–1232. https://doi.org/10.1007/s00170-013-5109-4

    Article  Google Scholar 

  39. Elkaseer A, Dimov S, Pham D, et al (2016) Material microstructure effects in micro-endmilling of Cu99.9E. Proc Inst Mech Eng Part B J Eng Manuf. doi: https://doi.org/10.1177/0954405416666898

  40. Son SM, Lim HS, Ahn JH (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45:529–535. https://doi.org/10.1016/j.ijmachtools.2004.09.001

    Article  Google Scholar 

  41. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design, second edn. Cambridge University Press, New York

    Google Scholar 

  42. Zlatin N, Field M (1973) Procedures and precautions in machining titanium alloys. In: Jaffee RI, Burte HM (eds) Titan Sci Technol. Springer US, Boston, MA, pp 489–504

  43. Thornton AG, Wilks J (1979) Tool wear and solid state reactions during machining. Wear 53:165–187. https://doi.org/10.1016/0043-1648(79)90226-6

    Article  Google Scholar 

  44. Kohlscheen J, Stock H-R, Mayr P (2002) Tailoring of diamond machinable coating materials. Precis Eng 26:175–182. https://doi.org/10.1016/S0141-6359(01)00109-X

    Article  Google Scholar 

  45. Qian J, Pantea C, Voronin G, Zerda TW (2001) Partial graphitization of diamond crystals under high-pressure and high-temperature conditions. J Appl Phys 90:1632–1637. https://doi.org/10.1063/1.1382832

    Article  Google Scholar 

  46. Liu H, Wang L, Wang A et al (1997) Preparation of nanometer size TiC particulate reinforcements in Ti matrix composites under high pressure. Nanostructured Mater 9:177–180. https://doi.org/10.1016/S0965-9773(97)00047-0

    Article  Google Scholar 

  47. Mantle AL, Aspinwall DK (1997) Surface integrity and fatigue life of turned gamma titanium aluminide. J Mater Process Technol 72:413–420. https://doi.org/10.1016/S0924-0136(97)00204-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwang Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, M., Yan, J. Nanometer-scale chip formation and surface integrity of pure titanium in diamond turning. Int J Adv Manuf Technol 95, 479–492 (2018). https://doi.org/10.1007/s00170-017-1185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1185-1

Keywords

Navigation