Skip to main content

Advertisement

Log in

Ultrasonic vibration assisted grinding of bio-ceramic materials: an experimental study on edge chippings with Hertzian indentation tests

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Bio-ceramics are biocompatible ceramic materials that are widely used for biomedical engineering applications due to their excellent properties. Because of their inherent hardness and brittleness properties, bio-ceramics are difficult to machine. Abrasive machining such as diamond grinding is one of the most widely used machining for bio-ceramic materials. However, one of the key technical challenges resulted from grinding is edge chipping. The presence of edge chipping in a workpiece affects its dimensional accuracy, machining cost, and potential service time. It is, therefore, crucial to develop a new cost-effective manufacturing process relevant to control edge chipping in diamond grinding of bio-ceramics. In this paper, an ultrasonic vibration-assisted grinding (UVAG) system is developed to investigate the effect of ultrasonic vibration on edge chippings. Hertzian indentation tests are also conducted to validate the experimental results. Results reveal that edge chipping of bio-ceramic materials can be reduced significantly with the assistance of ultrasonic vibration. The results of this study can be applied to other manufacturing process when edge chippings of brittle materials are expected to be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuo K, Tsao C (2012) Rotary ultrasonic-assisted milling of brittle materials. Trans Nonferrous Metals Soc China 22:s793–s800

    Article  Google Scholar 

  2. Thamaraiselvi TV, Rajeswari S (2004) Biological evaluation of bio-ceramic materials—a review. Trends Biomater Artif Organs 18(1):9–17

    Google Scholar 

  3. Hench LL (1991) Bio-ceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  4. Rebro PA, Shin YC, Incropera FP (2004) Design of operating conditions for crack free laser-assisted machining of mullite. Int J Mach Tools Manuf 44:677–694

    Article  Google Scholar 

  5. Yin L, Song XF, Song YL, Huang T, Li J (2006) An overview of in vitro abrasive finishing & CAD/CAM of bio-ceramics in restorative dentistry. Int J Mach Tools Manuf 46:1013–1026

    Article  Google Scholar 

  6. Changa C, Kuob C (2007) An investigation of laser-assisted machining of Al2O3 ceramics planning. Int J Mach Tools Manuf 47:452–461

    Article  Google Scholar 

  7. Liu D, Cong WL, Pei ZJ, Tang YJ (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tools Manuf 52:77–84

    Article  Google Scholar 

  8. DeAza AH, Chevalier J, Fantozzi G, Schehlb M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23(1):937–945

    Article  Google Scholar 

  9. Martin A (2000) Inert bio-ceramics (Al2O3, ZrO2) for medical application. Injury, Int J Care Injured 31:S-D33–S-D36

    Article  Google Scholar 

  10. Li Y, Qiao G, Jin Z (2002) Machinable AL2O3/BN composite ceramics with strong mechanical properties. Mater Res Bull 37:1401–1409

    Article  Google Scholar 

  11. Weisse B, Affolter C, Terrasi GP, Piskoty G, Köbel S (2009) Failure analysis of in vivo fractured ceramic femoral heads. Eng Fail Anal 16(4):1188–1194

    Article  Google Scholar 

  12. Willmann G (2002) Bio-ceramics in joint replacement: state-of-the-art and future options. Ceram Forum Int 79(5):E27–E31

    Google Scholar 

  13. Black J (2005) Bearing surfaces. In: Ceramics in orthopaedics, Proceedings of the Tenth International BIOLOX Symposium, Darmstadt, Germany, 3–8

  14. Esquivel-Upshaw JF, Anusavice KJ, Young H, Jones J, Gibbs C (2004) Clinical performance of a lithia disilicate-based core ceramic for three-unit posterior FPDs, 17(4):469–75

  15. Rekow ED, Thompson VP (2005) Near-surface damage—a persistent problem in crowns obtained by computer-aided design and manufacturing. Proc Inst Mech Eng H: J Eng Med 219(4):233–243

    Article  Google Scholar 

  16. Ting HT, Abou-EL-Hossein KA, Chua HB (2009) Review of micromachining of ceramics by etching. Trans Nonferrous Met Soc China 19:s1–s16

    Article  Google Scholar 

  17. Chai H (2011) On the mechanics of edge chipping from spherical indentation. Int J Fract 169(1):85–95

    Article  Google Scholar 

  18. Ng S, Le D, Tucker S, Zhang G (1996) Control of machining induced edge chipping on glass ceramics, In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Atlanta, GA, USA, 229–236

  19. Chai H, Lee JW, Lawn BR (2011) On the chipping and splitting of teeth. J Mech Behav Biomed Mater 4:315–321

    Article  Google Scholar 

  20. Constantino PJ, Lee JJW, Chai H, Zipfel B, Ziscovici C, Lawn BR, Lucas PW (2010) Tooth chipping can reveal the diet and bite forces of fossil hominins. Biol Lett 6:826–829

    Article  Google Scholar 

  21. Cao YQ (2001) Failure analysis of exit edges in ceramic machining using finite element analysis. Eng Fail Anal 8(4):325–338

    Article  Google Scholar 

  22. Chiu WC, Thouless MD, Endres WJ (1998) An analysis of chipping in brittle materials. Int J Fract 90:287–298

    Article  Google Scholar 

  23. Yang B, Shen X, Lei S (2009) Mechanisms of edge chipping in laser-assisted milling of silicon nitride ceramics. Int J Mach Tools Manuf 49(3–4):334–350

    Google Scholar 

  24. Yoshifumi O, Tetsuo M, Minoru S (1995) Chipping in high precision slot grinding of Mn–Zn ferrite. Ann CIRP 44(1):273–277

    Article  Google Scholar 

  25. Wang J-JJ, Liao Y-Y, Huang C-Y (2011) The effect of uncut chip thickness on edge chipping and wheel performance in groove grinding of single crystal silicon. Proc Inst Mech Eng B J Eng Manuf 225(8):1255–1262

    Article  Google Scholar 

  26. Vogler MP, DeVor RE, Kapoor SG (2004) On the modeling and analysis of machining performance in micro end milling, Part I: surface generation. J Manuf Sci Eng 126:685–694

    Article  Google Scholar 

  27. Vogler MP, DeVor RE, Kapoor SG (2004) On the modeling and analysis of machining performance in micro end milling, Part II: cutting force prediction. J Manuf Sci Eng 126:695–705

    Article  Google Scholar 

  28. Vogler MP, DeVor RE, Kapoor SG (2003) Microstructure-level force prediction model for micro milling of multiphase materials. J Manuf Sci Eng 125:202–209

    Article  Google Scholar 

  29. Gong H, Fang FZ, Zhang XF, Du J, Hu XT (2013) Study on the reduction strategy of machining-induced edge chipping based on finite element analysis of in-process workpiece structure. J Manuf Sci Eng 135(1):10

    Article  Google Scholar 

  30. Churi NJ, Pei ZJ, Treadwell C (2006) Rotary ultrasonic machining of titanium alloy: effects of machining variables. J Mach Sci Technol 10(3):301–321

    Article  Google Scholar 

  31. Tesfay HD, Xie Y, Xu Z, Yan B, Li Z C (2013) “An Experimental Study on Edge Chipping in Ultrasonic Vibration Assisted Grinding of Bio-Ceramic Materials”, Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference, Madison, Wisconsin, USA., pp. V001T01A045, doi:10.1115/MSEC2013-1188

  32. Wang Y, Lin B, Wang S, Cao X (2014) Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. Int J Mach Tool Manuf 77:66–73

    Article  Google Scholar 

  33. Ahmed Y, Cong WL, Stanco MR, Xu ZG, Pei ZJ, Treadwell C, Zhu YL, Li ZC (2012) Rotary ultrasonic machining of alumina dental ceramics: a preliminary experimental study on surface and subsurface damages. J Manuf Sci Eng 134(6):064501–1

    Article  Google Scholar 

  34. Gong H, Fang FZ, Hu XT (2010) Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials. Int J Mach Tool Manuf 50(3):303–307

    Article  Google Scholar 

  35. Akbari J, Borzoie H, Mamduhi MH (2008) Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3). World Acad Sci Eng Technol 41:785–789

    Google Scholar 

  36. Zeng WM, Li ZC, Pei ZJ, Treadwell C (2005) Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. Int Mach Tool Manuf 45(12–13):1468–1473

    Article  Google Scholar 

  37. Tawakoli T, Azarhoushang B (2009) Ultrasonic assisted dry grinding of 42CrMo4. Int J Adv Manuf Technol 42(9–10):883–891

    Article  Google Scholar 

  38. Singh R, Khamba JS (2007) Taguchi technique for modeling material removal rate in ultrasonic machining of titanium. Mater Sci Eng A(460–461):365–369

    Article  Google Scholar 

  39. Guzzo PL, Shinohara AH, Raslan AA (2004) A comparative study on ultrasonic machining of hard and brittle materials. J Braz Soc Mech Sci Eng XXVI(1):56–61

    Google Scholar 

  40. Park KH, Hong YH, Kim KT, Lee SW, Choi HZ, Choi YJ (2014) Understanding of ultrasonic assisted machining with diamond grinding tool. Mod Mech Eng 4:1–7

    Article  Google Scholar 

  41. Uhlmann E, Spur G (1998) Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance. CIRP Ann Manuf Technol 47(1):249–252. doi:10.1016/S0007-8506(07)62828-5

    Article  Google Scholar 

  42. Lv D, Huang Y, Wang H, Tang Y, Wu X (2013) Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass. J Mater Process Technol 213(9):1548–1557. doi:10.1016/j.jmatprotec.2013.04.001

    Article  Google Scholar 

  43. Zhou Y, Funkenbusch PD, Quesnel DJ (1997) Stress distributions at the abrasive-matrix interface during tool wear in bound abrasive grinding—a finite element analysis. Wear 209(1–2): 247–254. Doi:10.1016/S0043-1648(96)07490-X

  44. Yue J, Liu WJ, Pei ZJ, Xin XJ, Treadwell C (2004) Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis. J Manuf Sci Eng 127(4):752–758. doi:10.1115/1.2034511

    Google Scholar 

  45. Li ZC, Cai LW, Pei ZJ, Treadwell C (2006) Edge-chipping reduction in rotary ultrasonic machining of ceramics: finite element analysis and experimental verification. Int J Mach Tools Manuf 46(12–13):1469–1477

    Article  Google Scholar 

  46. Zeng WM, Li ZC, Pei ZJ, Treadwell C (2005) Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. Int J Mach Tools Manuf 45(12–13):1468–1473

    Article  Google Scholar 

  47. Ahmed Y, Cong WL, Stanco MR, Xu ZG, Pei ZJ, Treadwell C, Zhu YL, Li ZC (2012) Rotary ultrasonic machining of alumina dental ceramics: a preliminary experimental study on surface and subsurface damages. J Manuf Sci Eng ASME 133:064501–1–5

    Google Scholar 

  48. Baig MS, Dowling AH, Fleming GJP (2013) Hertzian indentation testing of glass-ionomer restoratives: a reliable and clinically relevant testing approach. J Dent 41(11):968–973

    Article  Google Scholar 

  49. Seshadri SG, Srinivasan, M (1984) Hertzian fracture testing of ceramics. Ceram Eng Sci Proc Am Ceram Soc, Volume 5

  50. Roberts SG, Franco A Jr (2004) Surface mechanical analyses by Hertzian indentation. Cerâmica 50:94–108

    Google Scholar 

  51. Bisrat Y, Roberts SG (2000) Residual stress measurement by Hertzian indentation. Mater Sci Eng A288:148–153

    Article  Google Scholar 

  52. Almond EA, McCormick NJ (1986) Constant-geometry edge-flaking of brittle materials. Lett Nat 321:53–55

    Article  Google Scholar 

  53. Zaayman E, Morrison G, Field JE (2009) Edge flaking in diamond. Int J Refract Met Hard Mater 27:409–416

    Article  Google Scholar 

  54. Chai H, Ravichandran G (2009) On the mechanics of fracture in monoliths and multilayers from low-velocity impact by sharp or blunt-tip projectiles. Int J Impact Eng 36:375–385

    Article  Google Scholar 

  55. Mohajerani A, Spelt JK (2010) Edge chipping of borosilicate glass by blunt indentation. Mech Mater 42(12):1064–1080

    Article  Google Scholar 

  56. Mohajerani A, Spelt JK (2011) Edge chipping of borosilicate glass by low velocity impact of spherical indenters. Mech Mater 43(11):671–683

    Article  Google Scholar 

  57. Mohajerani A, Spelt JK (2010) Edge chipping of borosilicate glass by blunt indenters. Mech Mater 2010(42):1064–1080

    Article  Google Scholar 

  58. Mohajerani A, Spelt JK (2011) Edge chipping of borosilicate glass by low velocity impact of spherical indenters. Mech Mater 43(11):671–683. doi:10.1016/j.mechmat.2011.06.016

    Article  Google Scholar 

  59. Cha H (2011) On the mechanics of edge chipping from spherical indentation. Int J Fract 169(1):85–95. doi:10.1007/s10704-011-9589-7

    Article  MathSciNet  Google Scholar 

  60. Chai H, Ravinchandran G (2009) On the mechanics of fracture in monoliths and multilayers from low-velocity impact by sharp or blunt-tip projectiles. Impact Eng 2009(36):375–385

    Article  Google Scholar 

  61. Huang Z, Lucas M, Adams MJ (2001) Effect of ultrasonic vibration on wedge indentation of a model elasto-viscoplastic material. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) 3rd International Conference on Experimental Mechanics, Beijing, China, pp. 445–448. (doi:10.1117/12.468766)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. C. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesfay, H.D., Xu, Z. & Li, Z.C. Ultrasonic vibration assisted grinding of bio-ceramic materials: an experimental study on edge chippings with Hertzian indentation tests. Int J Adv Manuf Technol 86, 3483–3494 (2016). https://doi.org/10.1007/s00170-015-8326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8326-1

Keywords

Navigation