Skip to main content
Log in

Surface topography after re-contouring of welded Ti-6Al-4V parts by means of 5-axis ball nose end milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The process chain of product regeneration includes the removal of excess weld material, which is called re-contouring. Like all machining processes, re-contouring influences the surface integrity and therefore the functional performance of the regenerated parts. One important aspect of surface integrity is the surface topography, especially for blades in turbine engines due to the flow losses. This paper investigates the fundamental influence of cutting conditions, tool geometry and weld shape on the surface topography after 5-axis ball nose end milling of welded Ti-6Al-4V parts. It is shown by experiment and simulation that apart from the cutting parameters also the chipping of the cutting edge and the tool runout highly influence the surface topography. The size of the weld and the tool compliance primarily influence the tool deflection and the appearance of chatter vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bieler H (1997) Einkristalle reparieren (repair of monocrystals). Technical report, Sulzer AG, technical review

  2. O’Neill WM (2001) Braze repair of gas turbine components: Retrospective, perspective, prospective. In: Proceedings of the 20th Conference (ASM International), HeatTreating 2000, pp 1040–1045

  3. Brauny P, Hammerschmidt M, Malik M (1985) Repair of air-cooled turbine vanes of high-performance aircraft engines. In: Refurbishing of superalloy components for gas turbines

  4. Bremer C (2007) Adaptive machining technology and data management for automated repair of complex turbine components with focus on blisk repair. In: 18th International Symposium on Airbreathing Engines (ISABE), Beijing

  5. Brinksmeier E, Berger U, Janssen R (1998) Advanced mechatronic technology for turbine blades maintenance. In: Power Station Maintenance Profitability Through Reliability, 30 March - 1 April 1998

  6. Eberlein A (2007) Phases of high-tech repair implementation. In: 18th International Symposium on Airbreathing Engines (ISABE), Beijing

  7. Miglietti W, Summerside I (2010) Repair process technology development and experience for w501f row 1 hot gas path blades. In: Proceedings of ASME Turbo Expo: Power for Land, Sea and Air

  8. Yilmaz O, Gindy N, Gao J (2010) A repair and overhaul methodology for aeroengine components. Robot Comput Integr Manuf 26:190–201

    Article  Google Scholar 

  9. Denkena B, Nespor D, Böß V, Köhler J (2014) Residual stresses formation after re-contouring of welded ti-6al-4v parts by means of 5-axis ball nose end milling. CIRP J Manuf Sci Technol 7(4):347–360

    Article  Google Scholar 

  10. Bons JP (2010), vol 132

  11. Hohenstein S, Seume J (2013) Numerical investigation on the influence of anisotropic surface roughness on the skin friction. In: Proceedings of the European Turbomachinery Conference

  12. Butler JJ (1997) Rough nozzle surfaces hurt turbine performance. Power Engineering (Barrington) 101:31–38

    Google Scholar 

  13. Lee JC, Kang HJ, Chu WS, Ahn SH (2007) Repair of damaged mold surface by cold-spray method. Annals of the CIRP 56(1):577–582

    Article  Google Scholar 

  14. Gao J, Chen X, Yilmaz O, Gindy N (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36(11–12):1170–1179. Ball End Mill Machining of Turbine tips

    Article  Google Scholar 

  15. Uhlmann E, Lypovka P (2013) Steigerung der werkzeugstandzeit und prozesssicherheit: Bei der schweinachbearbeitung durch angepasste frswerkzeuge. ZWF 108(7–8):504–508

    Google Scholar 

  16. Huang H, Gong ZM, Chen XQ, Zhou L (2003) Smart robotic system for 3d profile turbine vane airfoil repair. Int J Adv Manuf Technol 21:275–283

    Article  Google Scholar 

  17. Möhring HC (2008) Reaktionsschnelle Instandsetzung von Formen mit einer transportablen hybridkinematischen Bearbeitungseinheit. PhD thesis, Leibniz Universität Hannover

  18. Hieu NT (2007) Modellierung des Hochgeschwindigkeitsfräsens mit Kugelkopffräsern unter besonderer Berücksichtigung der Oberflächengüte. PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)

  19. Inasaki I (2002) Initiatives of Precision Engineering at the Beginning of a Millennium. In: 10th International Conference on Precision Engineering (ICPE). Springer US, Yokohama, Japan, July 1820, 2001

  20. Neugebauer R, Bouzakis K-D, Denkena B, Klocke F, Sterzing A, Tekkaya AE, Wertheim R (2011) Velocity effects in metal forming and machining processes. CIRP Ann 60:627– 650

    Article  Google Scholar 

  21. Baptista R, Antune Simoes JF (2000) Three and five axes milling of sculptured surfaces. J Mater Process Technol 103(3):398– 403

    Article  Google Scholar 

  22. Tönshoff HK, Hollmann F (2005) Hochgeschwindigkeitsspanen (High speed cutting). Wiley, Weinheim

    Google Scholar 

  23. Ulutan D, Özel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280

    Article  Google Scholar 

  24. Knobel PP (2000) Fräsen von Freiformflächen mit Schleifqualität. PhD thesis, Eidgenössische Technische Hochschule Zürich

  25. Arizmendi M, Fernández J, López de Lacalle LN, Lamikiz A, Gil A, Sánchez JA, Campa FJ, Veiga F (2008) Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset. experimental validation. CIRP Ann 57(1):101–104

    Article  Google Scholar 

  26. Bouzakis K-D, Aichouh P, Efstathiou K (2003) Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int J Mach Tools Manuf 43:499–514

    Article  Google Scholar 

  27. Buj-Corral I, Vivancos-Calvet J, Domínguez-Fernández A (2012) Surface topography in ball-end milling processes as a function of feed per tooth and radial depth of cut. Int J Mach Tools Manuf 53(0):151–159

    Article  Google Scholar 

  28. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann 63(2):631–653

    Article  Google Scholar 

  29. (2010) Deutsches Institut für Normung. Din en iso 4287: Geometrical product specifications (gps) - surface texture: Profile method - terms, definitions and surface texture

  30. Quintana G, de Ciurana J, Ribatallada J (2010) Surface roughness generation and material removal rate in ball end milling operations. Mater Manuf Process 25(/6):386–398

    Article  Google Scholar 

  31. Ozturk E, Tunc LT, Budak E (2009) Investigation of lead and tilt angle effects in 5-axis ball-end milling processes. Int J Mach Tools Manuf 49:1053–1062

    Article  Google Scholar 

  32. Vakondios D, Kyratsis P, Yaldiz S, Antoniadis A (2012) Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy al7075-t6. Measurement 45:1480– 1488

    Article  Google Scholar 

  33. Elbestawi MA, Ismail F, Yuen KM (1994) Surface topography characterization in finish milling. Int J Mach Tools Manuf 34(2):245–255

    Article  Google Scholar 

  34. Chen JS, Huang YK, Chen MS (2005) A study of the surface scallop generating mechanism in the ball-end milling process. Int J Mach Tools Manuf 45(9):1077–1084

    Article  Google Scholar 

  35. Liu N, Loftus M, Whitten A (2005) Surface finish visualisation in high speed, ball nose milling applications. Int J Mach Tools Manuf 45(10):1152–1161

    Article  Google Scholar 

  36. Antoniadis A, Savakis C, Bilalis N, Balouktsis A (2003) Prediction of surface topomorphy and roughness in ball-end milling. Int J Adv Manuf Technol 21(12):965–971

    Article  Google Scholar 

  37. Lavernhe S, Quinsat Y, Lartique C, Bown C (2014) Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool. Int J Adv Manuf Technol 74:393– 401

    Article  Google Scholar 

  38. Surmann T, Enk D (2007) Simulation of milling tool vibration trajectories along changing engagement conditions. Int J Mach Tools Manuf 47(9):1442–1448

    Article  Google Scholar 

  39. Deutsches Institut für Normung. Din 4760: Form deviations: Concepts; classification system, 1982

  40. Böß V, Nespor D, Samp A, Denkena B (2013) Numerical simulation of process forces during re-contouring of welded parts considering different material properties. CIRP J Manuf Sci Technol 6(3):167–174

    Article  Google Scholar 

  41. Goeke S, Rausch S, Schumann S, Biermann D (2013) Charakterisierung funktionaler oberflächen durch die konfokale weißlichtmikroskopie (characterization of functional surfaces using white light confocal microscopy). Forum Schneidwerkzeug- und Schleiftechnik 2013:88–95

    Google Scholar 

  42. Kleppmann W (2011) Versuchsplanung Produkte und Prozesse optimieren (Design of Experiments: Improvements of Products and Processes). Hanser Verlag, 7., aktualisierte und erweiterte auflage edition

  43. Budak E, Tunc LT (2010) Identification and modeling of process damping in turning and milling using a new approach. CIRP Ann 59(1):403–408

    Article  Google Scholar 

  44. Tun LT, Budak E (2012) Effect of cutting conditions and tool geometry on process damping in machining. Int J Mach Tools Manuf 57(0):10–19

    Google Scholar 

  45. Altintas Y, Engin S (2001) Mechanics and dynamics of general milling cutters. part i: helical end mills. Int J Mach Tools Manuf 41:2195–2212

    Article  Google Scholar 

  46. ASTM and American Society for Testing and Materials. Initial graphics exchange specification, 1997

  47. Denkena B, Böß V (2009) Technological nc simulation for grinding and cutting processes using cuts

  48. Salgado MA, López de Lacalle LN, Lamikiz A, Mu noa J, S’anchez JA (2005) Evaluation of the stiffness chain on the deflection of end-mills under cutting forces. Int J Mach Tools Manuf 45(6):727–739

    Article  Google Scholar 

  49. Kim GM, Kim BH, Chu CN (2003) Estimation of cutter deflection and form error in ball-end milling processes. Int J Mach Tools Manuf 43(9):917–924

    Article  Google Scholar 

  50. Toh CK (2004) Surface topography analysis in high speed finish milling inclined hardened steel. Precis Eng 28(4):386–398

    Article  Google Scholar 

  51. Denkena B, Böß V, Nespor D, Gilge P, Hohenstein S, Seume J (2015) Prediction of the 3d surface topography after ball end milling and its influence on aerodynamics. Procedia Engineering 31:221–227. 15th CIRP Conference on Modelling of Machining Operations

    Google Scholar 

  52. Denkena B, Böß V, Nespor D, Samp A (2011) Kinematic and stochastic surface topography of machined tial6v4-parts by means of ball nose end milling. Procedia Engineering 19(0):81–87. 1st CIRP Conference on Surface Integrity (CSI)

    Article  Google Scholar 

  53. Hahn Gerald J, Shapiro Samuel S (1994) Statistical Models in Engineering. Wiley

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Nespor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nespor, D., Denkena, B., Grove, T. et al. Surface topography after re-contouring of welded Ti-6Al-4V parts by means of 5-axis ball nose end milling. Int J Adv Manuf Technol 85, 1585–1602 (2016). https://doi.org/10.1007/s00170-015-7885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7885-5

Keywords

Navigation