Skip to main content
Log in

3D modeling of strain fields and strain rate in the cutting area: application to milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Given the complexity of the physical phenomena present in machining, orthogonal cutting is the configuration that has been most studied and modeled analytically. However, this configuration is no longer applicable if we consider the true orientations of the cutting edge found in the modeling space, for , during milling. Along the cutting edge, geometric and kinematic parameters vary considerably and the speed vector at each point is very sensitive to the true position of the point under consideration on the cutting edge. For each shear zone, the study proposed here looks at the effect of velocity gradients on the strain and strain rate fields. These velocity gradients generate extra chip displacement, in three dimensions, and consequently give rise to new force components and cutting moments. This study describes the overall calculation process, starting with a detailed description of each characteristic zone in the cutting area. By determining the speed vector and the displacement vector, strains and strain rates can be mapped for the entire volume of the cutting area when milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eugene Merchant M (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275

    Article  Google Scholar 

  2. Oxley PLB (1961) Mechanics of metal cutting. Int J Mach Tool Design Res 1:89–97

    Article  Google Scholar 

  3. F. Dargnat (2006) Modélisation semi-analytique par approche énergétique du procédé de perçage de matériaux monolithiques. Thèse Université de Bordeaux 1, N° d'ordre : 3216

  4. Lee P, Altintas Y (1996) Prediction of ball-end milling forces from orthogonal cutting data. Int J Mach Tools Manuf 36(9):1059–1072

    Article  Google Scholar 

  5. Larue A, Altintas Y (2005) Simulation of flank milling processes. Int J Mach Tools Manuf 45(4–5):549–559

    Article  Google Scholar 

  6. Kaymakci M, Kilic ZM, Altintas Y (2012) Unified cutting force model for turning, boring, drilling and milling operations. Int J Mach Tools Manuf 54–55:34–45

    Article  Google Scholar 

  7. Maurel-Pantel A, Fontaine M, Thibaud S, Gelin JC (2012) 3D FEM simulations of shoulder milling operations on a 304L stainless steel. Simul Model Pract Theory 22(22):13–27

    Article  Google Scholar 

  8. SANDVIK-COROMANT (2001) Fraisage - Principes

  9. W. Yousfi, R. Laheurte, Ph. Darnis, M. Calamaz, O. Cahuc (2014) 3D Kinematic fields studies in milling. Proceedings in Manufacturing Systems, ISSN 2067–9238 9 (1):163–168

  10. Saï L, Bouzid W, Zghal A (2008) Chip thickness analysis for different tool motions: for adaptive feed rate. J Mater Process Technol 204(1–3):213–220. doi:10.1016/j.jmatprotec.2007.11.094

    Article  Google Scholar 

  11. Li HZ, Liu K, Li XP (2001) A new method for determining the undeformed chip thickness in milling. J Mater Process Technol 113(1–3):378–384. doi:10.1016/S0924-0136(01)00586-6

    Article  Google Scholar 

  12. Spiewak S (1995) An improved model of the chip thickness in milling. CIRP Ann Manuf Technol 44(1):39–42. doi:10.1016/S0007-8506(07)62271-9

    Article  Google Scholar 

  13. Laheurte R (2004) Application de la théorie du second gradient à la coupe des métaux Thèse université de Bordeaux 1, N° d'ordre : 2935,

  14. Calamaz M (2008) Approche expérimentale et numérique de l'usinage à sec de l'alliage aeronautique Ti6V. Thèse Université Bordeaux 1, N° d'ordre : 3605,

  15. G. Albert (2010) Identification et modélisation du torseur des actions de coupe en fraisage. Thèse Université Bordeaux 1, N° d'ordre : 4152,

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yousfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousfi, W., Darnis, P., Cahuc, O. et al. 3D modeling of strain fields and strain rate in the cutting area: application to milling. Int J Adv Manuf Technol 84, 2207–2218 (2016). https://doi.org/10.1007/s00170-015-7848-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7848-x

Keywords

Navigation