Skip to main content
Log in

Modeling and control of fluid dispensing processes: a state-of-the-art review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fluid dispensing is a method by which fluid materials, such as epoxy, adhesive, and encapsulant, are delivered in a controlled manner in electronics packaging. This paper presents a brief review of past and recent developments in the modeling and control of the time-pressure fluid dispensing process. In particular, the characterization of the fluid flow behavior is addressed by reviewing several promising models from both time-independent and time-dependent perspectives. In the modeling of the time-pressure fluid dispensing process, various approaches for representing the flow rate of fluid dispensed and the profile of fluid formed on target are examined; and the issues involved are identified. In the control of time-pressure dispensing process, a brief review of various control methods is presented along with their limitations. The challenges associated with this control problem are also discussed. This paper is concluded with the recommendations of research in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quinones H et al (2000) Flip Chip and Chip Scale Packaging Technologies: A Historical Perspective and Future Challenges. SEMICON China 2000 Technical Symposium

  2. Han S, Wang KK (1997) Analysis of the flow of encapsulant during underfill encapsulation of flip-chips. IEEE Trans Compon Packag Manuf Technol—Part B 20:424–433

    Article  Google Scholar 

  3. Tummala RR, Rymaszewski EJ (1989) Microelectronic packaging handbook. Nostrand_Reinhold, New York

    Google Scholar 

  4. Boulanger R (2001) Chapter 41: Assembly Processes, Printed Circuits Handbook, Editor-in-Chief: C. F. Coombs, Mcgraw-Hall

  5. Dixon D et al (1997) Practical issues concerning dispensing pump technologies. Circuits Assem 36–40, August

  6. Cavallaro WA et al. (1998) Method and Apparatus for Measuring the Size of Drops of a Viscous Material Dispensed from a Dispensing System. United States Patent, no. 5837892

  7. Chen XB, Schoenau G, Zhang WJ (2002) On the flow rate dynamics in time-pressure dispensing processes. ASME J Dyn Syst Meas Contr 124:693–698, doi:10.1115/1.1514058

    Article  Google Scholar 

  8. West AA, Williams DJ, Hinde CJ (1995) Experience of the application of intelligent control paradigms to real manufacturing processes. Proc Instn Mech Engrs 209:293–308, doi:10.1243/PIME_PROC_1995_209_396_02

    Article  Google Scholar 

  9. C. A. Bretmersky et al. (1999) Method of compensating for changes in flow characteristics of a dispensed fluid. United States Patent, no. 5995909

  10. Chen XB et al (2003) Off-line control of time-pressure dispensing processes for electronic packaging. IEEE Trans Electr Packag Manuf 26:286–293

    Article  Google Scholar 

  11. Reighard MA et al. (2001) Viscous material dispensing system and method with feedback control. United States Patent, no. 6173864

  12. Bouras CE et al. (1999) Flip chip underfill system and method. United States Patent, no. 5906682

  13. Skelland AHP (1967) Non-Newtonian flow and heat transfer. Wiley, New York

    Google Scholar 

  14. Holdsworth SD (1993) Rheological models used for the prediction of the flow properties of food products: a literature review. Trans Inst Chem Eng 71(C3):139–179

    Google Scholar 

  15. Razban A (1993) Intelligent control of an automated adhesive dispensing cell. Ph.D Thesis, Imperial College, London, UK

  16. Razban A, Davies BL (1995) Analytical modelling of the automated dispensing of adhesive material. J Adhes Sci Technol 9:1435–1450, doi:10.1163/156856195X00112

    Article  Google Scholar 

  17. Chen XB, Ke H (2006) Effects of fluid properties on dispensing processes for electronics packaging. IEEE Trans Electr Packag Manuf 29(2):75–82, doi:10.1109/TEPM.2006.874964

    Article  Google Scholar 

  18. Martinez-Padilla LP, Hardy J (1989) Quantifying thixotropy of Bechamel sauce under constant shear stress by phenomenological and empirical models. J Texture Stud 20:71–85, doi:10.1111/j.1745-4603.1989.tb00421.x

    Article  Google Scholar 

  19. Cheng DC-H, Evans F (1965) Phenomenological characterization of the rheological behaviour of inelastic reversible thixotropics and antithixotropic fluids. Br J Appl Phys 16:1599–1617, doi:10.1088/0508-3443/16/11/301

    Article  Google Scholar 

  20. De Kee D, Turcotte G (1983) Flow properties of time-dependent foodstuffs. J Rheology 27(6):581–604, doi:10.1122/1.549719

    Article  Google Scholar 

  21. Chan CF et al (1996) Modelling steady and transient rheological properties. J Food Eng 27:63–70, doi:10.1016/0260-8774(94)00077-M

    Article  Google Scholar 

  22. Chen XB (2005) Time-dependent rheological behavior of fluids for electronic packaging. ASME J Electron Packaging 127(4):370–374, doi:10.1115/1.2056568

    Article  Google Scholar 

  23. Kwong CK, Bai H (2005) Fuzzy regression approach to process modeling and optimization of epoxy dispensing. Int J Prod Res 43(12):2359–2375, doi:10.1080/00207540500046137

    Article  Google Scholar 

  24. Nakayama T et al (1980) Pipe transportation of minced fish paste. J Food Sci 45:844–847, doi:10.1111/j.1365-2621.1980.tb07463.x

    Article  Google Scholar 

  25. Chen XB, Schoenau G, Zhang WJ (2000) Modelling of time-pressure fluid dispensing process. IEEE Trans Electr Packag Manuf 23:300–305, doi:10.1109/6104.895075

    Article  Google Scholar 

  26. Zhao YX et al (2004) Integrated modeling of a time-pressure fluid dispensing system electronics manufacturing. Int J Adv Manuf Technol 26:1–9, doi:doi:10.1007/s00170-003-1978-2

    Article  Google Scholar 

  27. Andersen BW (1967) The analysis and design of pneumatic systems. Wiley, New York

    Google Scholar 

  28. Dussan EB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11:371–400, doi:10.1146/annurev.fl.11.010179.002103

    Article  Google Scholar 

  29. Ehrhanrd P, Davis SH (1991) Non-isothermal spreading of liquid drops on horizontal plates. J Fluid Mech 229:365–388, doi:10.1017/S0022112091003063

    Article  Google Scholar 

  30. Haley PJ, Miksis MJ (1991) The effect of the contact line on droplet spreading. J Fluid Mech 223:57–81, doi:10.1017/S0022112091001337

    Article  MATH  MathSciNet  Google Scholar 

  31. Chen XB, Kai J, Hashemi M (2007) Evaluation of fluid dispensing systems using axiomatic design principles. ASME J Mech Des 129(6):640–648, doi:10.1115/1.2717233

    Article  Google Scholar 

  32. Chen XB, Schoenau G, Zhang WJ (2005) Modeling and control of time-pressure dispensing processes for surface mount technology. IEEE/ASME Trans Mechatron 10(3):326–334

    Article  Google Scholar 

  33. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929, doi:10.1103/RevModPhys.69.865

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X.B. Modeling and control of fluid dispensing processes: a state-of-the-art review. Int J Adv Manuf Technol 43, 276–286 (2009). https://doi.org/10.1007/s00170-008-1700-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-008-1700-5

Keywords

Navigation