Skip to main content

Advertisement

Log in

Designing efficient methods for the tandem AGV network design problem using tabu search and genetic algorithm

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A tandem AGV configuration connects all cells of a manufacturing facility/plant by means of non-overlapping, single-vehicle closed loops. Each loop has at least one additional P/D station, provided as an interface between adjacent loops. This study describes the development of tabu search and genetic algorithm procedures for designing tandem AGV systems. The objective is to minimize the maximum workload of the system. Both algorithms have mechanisms to prevent solutions with intersecting loops. The new algorithms and the partitioning algorithm presented by Bozer and Srinivasan are compared using randomly generated test problems. Results show that for large-scale problems, the partitioning algorithm often leads to infeasible configurations with crossed loops in spite of its shorter running time. However the newly developed algorithm avoids infeasible configurations and often yields better objective function values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tompkins JA, White JA, Bozer YA, Tanchoco JMA (2003) Facilities planning, 3rd edn. Wiley, Chichester

    Google Scholar 

  2. Asef-Vaziri A, Laporte L (2005) Loop based facility planning and material handling. Europ J Oper Res 164:1–11

    Article  MATH  MathSciNet  Google Scholar 

  3. Gaskin RJ, Tanchoco JMA (1987) Flow path design for automated guided vehicle system. Int J Prod Res 25:667–676

    Article  Google Scholar 

  4. Gaskin RJ, Tanchoco RMA, Taghaboni F (1989) Virtual flow paths for free ranging automated guided vehicle systems. Int J Prod Res 27:91–100

    Article  Google Scholar 

  5. Kaspi M, Tanchoco JMA (1990) Optimal flow path design of unidirectional AGV systems. Int J Prod Res 28:1023–1030

    Article  Google Scholar 

  6. Venkataramanan MA, Wilson KA (1991) A branch- and- bound algorithm for flow path design of automated guided vehicle systems. Naval Res Logist Quart 38:431–445

    Article  MATH  MathSciNet  Google Scholar 

  7. Sinriech D, Tanchoco JMA (1991) Intersection graph method for AGV flow path design. Int J Prod Res 29:1725–1732

    Article  MATH  Google Scholar 

  8. Kouvelis P, Gutierrez GJ, Chiang WC (1992) Heuristic unidirectional flow path design approach for automated guided vehicle systems. Int J Prod Res 30:1327–1351

    Article  MATH  Google Scholar 

  9. Seo Y, Egbelu PJ (1995) Flexible guide path design for automated guided vehicle systems. Int J Prod Res 33:1135–1156

    Article  MATH  Google Scholar 

  10. Sun XC, Tchernev N (1996) Impact of empty vehicle flow on optimal flow path design for unidirectional AGV systems. Int J Prod Res 34:2827–2852

    Article  MATH  Google Scholar 

  11. Zanjirani Farahani R, Tari FG (2001) Optimal flow path designing of unidirectional AGV systems. Intl J Engin Sci 12:31–44

    Google Scholar 

  12. Zanjirani Farahani R, Tari FG (2002) A branch & bound method for finding flow-path designing of AGV systems. IIE Trans A Basics 15:81–90

    MATH  Google Scholar 

  13. Kaspi M, Kesselman U, Tanchoco JMA (2002) Optimal solution for the flow path design problem of a balanced unidirectional AGV system. Int J Prod Res 40:349–401

    Google Scholar 

  14. Ko KC, Egbelu PJ (2003) Unidirectional AGV guide path network design: a heuristic algorithm. Int J Prod Res 41:2325–2343

    Article  MATH  Google Scholar 

  15. Bozer YA, Srinivasan MM (1989) Tandem configurations for AGV systems offer simplicity and flexibility. Industr Eng 21:23–27

    Google Scholar 

  16. Bozer YA, Srinivasan MM (1991) Tandem configuration for automated guided vehicle systems and the analysis of single vehicle loops. IIE Trans 23:72–82

    Article  Google Scholar 

  17. Bozer YA, Srinivasan MM (1992) Tandem AGV systems: a partitioning algorithm and performance comparison with conventional AGV systems. Europ J Oper Res 63:173–191

    Article  Google Scholar 

  18. Lin JT, Chang CCK, Liu WC (1994) A load routing problem in a tandem-configuration automated guided vehicle system. Int J Prod Res 32:411–427

    Article  MATH  Google Scholar 

  19. Laporte G, Zanjirani Farahani R, Miandoabchi E (2006) Designing an efficient method for tandem AGV network design problem using tabu search. Appl Math Comput (in press)

  20. Tanchoco JMA, Sinriech D (1992) OSL-Optimal Single Loop guide paths for AGVs. Int J Prod Res 30:665–681

    Article  Google Scholar 

  21. Sinriech D, Tanchoco JMA (1993) Solution methods for the mathematical models of single loop AGV systems. Int J Prod Res 31:705–726

    Article  Google Scholar 

  22. Banerjee P, Zhou Y (1995) Facilities layout design optimization with single loop material flow path configuration. Int J Prod Res 33:183–203

    Article  MATH  Google Scholar 

  23. Laporte G, Asef-Vaziri A, Sriskandarajah C (1996) Some application of the generalized traveling salesman problem. J Oper Res Society 47:1461–1467

    MATH  Google Scholar 

  24. Asef-Vaziri A, Laporte G, Sriskandarajah C (2000) The block layout shortest loop design problem. IIE Trans 32:724–734

    Google Scholar 

  25. Asef-Vaziri A, Dessouky M, Sriskandarajah C (2001) A loop material flow system design for automated guided vehicles. Intl J Flex Manuf Syst 13:33–48

    Article  Google Scholar 

  26. Asef-Vaziri A, Laporte L, Ortiz R (2006) Exact and heuristic procedures for the material handling circular flow path design problem. Europ J Oper Res DOI 10.1016/j.ejor.2005.08.023

  27. Zanjirani Farahani R, Laporte G, Sharifyazdi M (2005) A practical exact algorithm for the shortest loop design problem in a block layout. Int J Prod Res 43:1879–1887

    Article  MATH  Google Scholar 

  28. Zanjirani Farahani R, Pourakbar M, Miandoabchi E (2006b) Developing exact and tabu search algorithms for simultaneously determining AGV loop and P/D stations in single loop systems. Int J Prod Res (in press)

  29. Zanjirani Farahani R, Karimi B, Tamadon S (2006a) Designing an efficient method for simultaneously determining the loop and the location of the P/D stations using genetic algorithm. Int J Prod Res (in press)

  30. Kim CW, Tanchoco JMA (1991) Conflict-free shortest-time bi-directional AGV routing. Int J Prod Res 29:2377–2391

    Article  MATH  Google Scholar 

  31. Chhajed D, Montreuil B, Lowe T (1992) Flow network design for manufacturing systems layout. Europ J Oper Res 57:145–161

    Article  MATH  Google Scholar 

  32. Rajagopalan S, Heragu SS, Taylor GD (2004) A lagrangian relaxation approach to solving the integrated pick-up/drop-off point and AGV flow path design problem. Appl Math Model 28:735–750

    Article  MATH  Google Scholar 

  33. Sinriech D, Tanchoco JMA (1994) SFT-Segmented Flow Topology. In: Tanchoco JMA (ed) Material flow system in manufacturing. Chapman and Hall, London, pp 200–235

    Google Scholar 

  34. Sinriech D, Tanchoco JMA (1995) An introduction to the segmented flow approach to discrete material flow systems. Int J Prod Res 33:3381–3410

    Article  MATH  Google Scholar 

  35. Sinriech D, Tanchoco JMA (1997) Design procedures and implementation of the Segmented Flow Topology (SFT) for discrete material flow systems. IIE Trans 29:323–335

    Google Scholar 

  36. Barad M, Sinriech D (1998) A petri net model for the operational design and analysis of Segmented Flow Topology (SFT) AGV system. Int J Prod Res 36:1401–1426

    Article  MATH  Google Scholar 

  37. Vis IFA (2006) Survey of research in the design and control of automated guided vehicle systems. Europ J Oper Res 170:677–709

    Article  MATH  Google Scholar 

  38. Hsieh LF, Sha DY (1996) A design process for tandem automated guided vehicle systems: the concurrent design of machine layout and guided vehicle routes in tandem automated guided vehicle systems. Integ Manuf Syst 7:30–38

    Article  Google Scholar 

  39. Liu FH, Chen JT (1997) Analytical framework for designing the divided automated guided vehicles system. Int J Industr Engin 4(2):90–102

    Google Scholar 

  40. Aarab A, Chetto H, Radouance L (1999) Flow path design for AGV systems. Stud Inform Contr 8(2):97–106

    Google Scholar 

  41. Yu W, Egbelu P (2001) Design of a variable path tandem layout for automated guided vehicle systems. J Manuf Syst 20:305–319

    Google Scholar 

  42. Kim KS, Chung BD, Jae M (2003) A design for a tandem AGVS with multi-load AGVs. Int J Adv Manuf Technol 22:744–752

    Article  Google Scholar 

  43. Bozer YA, Lee CG (2004) Using existing workstations as transfer stations in tandem AGV systems. J Manuf Syst 23:229–241

    Google Scholar 

  44. Ventura JA, Lee CU (2001) Tandem loop with multiple vehicles configuration for automated guided vehicle systems. J Manuf Syst 20:153–165

    Article  Google Scholar 

  45. Huang C (1997) Design of material transportation system for tandem automated guided vehicle systems. Int J Prod Res 35:943–953

    Article  MATH  Google Scholar 

  46. Farling BE, Mosier CT, Mahmoodi F (2001) Analysis of automated guided vehicle configuration in flexible manufacturing systems. Int J Prod Res 39:4239–4260

    Article  MATH  Google Scholar 

  47. Ross EA, Mahmoodi F, Mosier CT (1996) Tandem configuration automated guided vehicle systems: a comparative study. Decis Sci 27:81–102

    Article  Google Scholar 

  48. Choi HG, Kwon HJ, Lee J (1994) Traditional and tandem AGV system layouts: a simulation study. Simul 63(2):85–93

    Article  Google Scholar 

  49. Ho YC, Hsieh PF (2004) A machine-to-loop assignment and layout design methodology for tandem AGV systems with multiple-load vehicles. Int J Prod Res 42(4):801–832

    Article  MATH  Google Scholar 

  50. Bartholdi JJ, Platzman LK (1989) Decentralized control of automated guided vehicles on a simple loop. IIE Trans 21(1):76–81

    Article  Google Scholar 

  51. Glover F (1989) Tabu search-Part I. ORSA J Comput 1:190–206

    MATH  MathSciNet  Google Scholar 

  52. Glover F (1990) Tabu search-Part II. ORSA J Comput 2:4–32

    MATH  Google Scholar 

  53. Glover F, Taillard E, De Werra D (1993) A user’s guide to tabu search. Annal Oper Res 41:3–28

    MATH  Google Scholar 

  54. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  55. Seber GAF (1984) Multivariate observations. Wiley, New York

    MATH  Google Scholar 

  56. Roe A (1997) User’s guide for LINDO and LINGO, Windows Versions. Duxbury Press, Belmont (Cal.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Zanjirani Farahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanjirani Farahani, R., Laporte, G., Miandoabchi, E. et al. Designing efficient methods for the tandem AGV network design problem using tabu search and genetic algorithm. Int J Adv Manuf Technol 36, 996–1009 (2008). https://doi.org/10.1007/s00170-006-0909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-006-0909-4

Keywords

Navigation