Skip to main content
Log in

Effects of size and shape of metallic objects on performance of passive radio frequency identification

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Passive ultra high frequency (UHF) spectrum radio frequency identification (RFID) systems have numerous applications. Continuous research and development of RFID systems is carried out to study solutions for different challenging cases of identification. Metallic objects set challenges for identification due to the behavior of electromagnetic waves on conductive boundaries. Therefore, novel tag designs have been developed for identification of metallic objects. This article presents a performance comparison of two different metal-mountable tag antennas, which are printed inverted-F antenna (IFA) and microstrip patch antenna with photonic band gap (PBG) ground plane and with regular ground plane. The effects of size and shape of metallic objects on tag antenna performance are studied with read range measurements and compared between the tag antenna types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foster BR, Burberry RA (1999) Antenna problems in RFID systems. IEE Colloquium on RFID Technology (Ref. No. 1999/123), pp 3/1–3/5

  2. Ukkonen L, Raumonen P, Keskilammi M, Sydänheimo L, Kivikoski M (2003) Challenges in the development of tag antennas for passive RFID of metallic objects. In: Salonen E, Juntti M, Saarnisaari H, Heikkinen P (eds): XXVII convention on radio science & IV Finnish wireless communication workshop, pp 267–270

  3. Raumonen P, Sydänheimo L, Ukkonen L, Keskilammi M, Kivikoski M (2003) Folded dipole Antenna near metal plate. Proc 2003 IEEE Antennas and Propagation Society International Symposium 1:848–851

    Google Scholar 

  4. Ukkonen L, Sydänheimo L, Keskilammi M, Kivikoski M. (2004) Development of novel RFID tags for identification of metallic objects. Proc 11th IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2004

  5. Finkenzeller K (2003) RFID Handbook, 2nd edn. Wiley, New York

    Google Scholar 

  6. Raza N, Bradshaw V, Hague M (1999) Applications of RFID technology. IEE Colloquium on RFID Technology (Ref. No. 1999/123), pp 1/1–1/5

  7. Brock DL (2001) The electronic product code (EPC): A naming scheme for physical objects. White Paper, Massachusetts Institute of Technology, Auto-ID Center

  8. Brock D, Cummins C (2003) EPC tag data specification. White Paper, Massachusetts Institute of Technology, Auto-ID Center

  9. Rao KVS (1999) An overview of backscattered radio frequency identification system (RFID). Proc 1999 Asia Pacific Microwave Conference 3:746–749

    Google Scholar 

  10. Cheng DK (1993) Plane electromagnetic waves. In fundamentals of engineering electromagnetics. Prentice-Hall, New York, pp 304–330

    Google Scholar 

  11. Reitz JR, Milford FJ, Christy RW (1993) Monochromatic waves in bounded regions. In foundations of electromagnetic theory, Addison-Wesley, Boston, pp 441–469

    Google Scholar 

  12. Stutzman WL, Thiele GA (1998) Some simple radiating systems and antenna practice. In antenna theory and design. Wiley, New York, pp 56–86

    Google Scholar 

  13. Ukkonen L, Soini M, Engels D, Sydänheimo L, Kivikoski M (2004) Effect of conductive material in objects on identification with passive RFID technology: A case study of cigarette cartons. Proc the 5th International Conference on Machine Automation, ICMA 2004, pp 569–572

  14. Ukkonen L, Engels D, Sydänheimo L, Kivikoski M (2004) Planar wire-type inverted-F RFID tag antenna mountable on metallic objects. Proc 2004 IEEE AP-S International Symposium 1:101–104

    Article  Google Scholar 

  15. Ukkonen L, Sydänheimo L, Kivikoski M (2004) A novel tag design using inverted-F antenna for radio frequency identification of metallic objects. Proc 2004 IEEE Sarnoff Symposium on Advances in Wired and Wireless Communication, pp 91–94

  16. Ukkonen L, Sydänheimo L, Kivikoski M (2004) Patch antenna with EBG ground plane and two-layer substrate for passive RFID of metallic objects. Proc 2004 IEEE AP-S International Symposium 1:93–96

    Article  Google Scholar 

  17. Hirvonen M, Pursula P, Jaakkola K, Laukkanen K (2004) Planar inverted-F antenna for radio frequency identification. IEEE Electron Lett 40(14):848–850

    Article  Google Scholar 

  18. Flint JA (2003) Numerical analysis of detuning in printed inverted F antennas for bluetooth applications. 5th European Personal Mobile Communications Conference, Conf. Publ. No. 492:96–100

  19. Kuo Y-L, Cheng Y-T, Wong K-L (2002) Printed inverted-F antennas for applications in wireless communication. Proc 2002 IEEE AP-S International Symposium 3:454–457

    Google Scholar 

  20. Soras C, Karaboikis M, Tsachtsiris, Makios V (2002) Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM Band. IEEE Antennas Propagat Mag 44(1):37–44

    Article  Google Scholar 

  21. Kumar G, Ray KP (2003) An introduction to microstrip antennas. In Broadband Microstrip Antennas, Artech House, Norwood, MA, pp 1–27

    Google Scholar 

  22. Qian Y, Itoh T (1999) Planar periodic structures for microwave and millimeter wave circuit applications. 1999 IEEE MTT-S International Microwave Symposium Digest 4:1533–1536

    Google Scholar 

  23. Salonen P, Keskilammi M, Sydänheimo L (2001) A low-Cost 2.45 GHz photonic band-gap patch antenna for wearable systems. Proc 2001 Eleventh International Conference on Antennas and Propagation (IEE Conf. Publ. No. 480) 2:719–723

  24. Poh Sok Hui, Alphones A (2000) Microstrip patch antenna with annular ring PBG. Proc 2000 IEEE Asia Pacific Microwave Conference, pp 1347−1351

  25. Kim W, Lee B (2002) Modelling and design of 2D UC-PBG structure using transmission line theory. Proc 2002 IEEE Antennas and Propagation Society International Symposium 3:780–783

    MATH  Google Scholar 

  26. Cheng D K (1992) Plane waves in lossless media. Field and wave electromagnetics, 2nd edn. Addison-Wesley, Boston, pp 354–366

  27. Toh BY, Cahill R, Fusco VF (2003) Understanding and measuring circular polarization. IEEE Trans Educ 46(3):313–318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauri Sydänheimo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sydänheimo, L., Ukkonen, L. & Kivikoski, M. Effects of size and shape of metallic objects on performance of passive radio frequency identification. Int J Adv Manuf Technol 30, 897–905 (2006). https://doi.org/10.1007/s00170-005-0133-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-005-0133-7

Keywords

Navigation