Skip to main content

Advertisement

Log in

Kinematically aligned total knee arthroplasty restores more native medial collateral ligament strain than mechanically aligned total knee arthroplasty

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Kinematically aligned total knee arthroplasty (KA TKA) targets restoration of patient-specific alignment and soft tissue laxity. However, whether KA TKA reproduces native soft tissue strain remains unclear. This cadaveric study tested the hypothesis that KA TKA would better restore the quantitative strain and strain distribution of medial collateral ligament (MCL) to the native healthy knee compared to mechanically aligned (MA) TKA.

Methods

Twenty-four fresh-frozen cadaver knees (12 pairs) were mounted on a customized knee squatting simulator to measure MCL strain during flexion. For each pair, one knee was assigned to KA TKA and the other to MA TKA. During KA TKA, the amount of femur and tibia resected was equivalent to implant thickness without MCL release using the calipered measuring technique. MA TKA was performed using conventional measured resection techniques. MCL strain was measured using a video extensometer (Mercury® RT RealTime tracking system, Sobriety s.r.o, Czech Republic). MCL strain and strain distribution during knee flexion were measured, and the measurements compared between native and post-TKA conditions.

Results

Mean and peak MCL strain were similar between KA TKA and native knees at all flexion angles (p > 0.1 at all flexion angles) while mean strain at all flexion angles and peak strain at ≥ 60º of MA TKA were approximately twice those of the native knees (p < 0.05 at ≥ 60º of flexion). In addition, greater MCL strain was observed in 4 of 12 regions of interest (ROI) after MA TKA (M1, M2, P1 and P2) compared to the native knee, whereas after KA TKA, MCL strain measurements were similar at all but 1 ROI (P2).

Conclusions

KA TKA restored a more native amount and distribution of MCL strain compared to MA TKA. These findings provide clues for understanding why patients may experience better performance and more normal knee sensations after KA TKA compared to MA TKA.

Level of evidence

Therapeutic study, Level I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdel MP, Ollivier M, Parratte S, Trousdale RT, Berry DJ, Pagnano MW (2018) Effect of postoperative mechanical axis alignment on survival and functional outcomes of modern total knee arthroplasties with cement: a concise follow-up at 20 years. J Bone Joint Surg Am 100(6):472–478

    Article  Google Scholar 

  2. Abdel MP, Oussedik S, Parratte S, Lustig S, Haddad FS (2014) Coronal alignment in total knee replacement: historical review, contemporary analysis, and future direction. Bone Joint J 96-b(7):857–862

    Article  CAS  Google Scholar 

  3. Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res 470(1):45–53

    Article  Google Scholar 

  4. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468(1):57–63

    Article  Google Scholar 

  5. Cabuk H, Kusku Cabuk F (2016) Mechanoreceptors of the ligaments and tendons around the knee. Clin Anat 29(6):789–795

    Article  Google Scholar 

  6. Calliess T, Bauer K, Stukenborg-Colsman C, Windhagen H, Budde S, Ettinger M (2017) PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 25(6):1743–1748

    Article  Google Scholar 

  7. Chang MJ, Kang SB, Chang CB, Han DH, Park HJ, Hwang K et al (2020) Posterior condylar offset changes and its effect on clinical outcomes after posterior-substituting, fixed-bearing total knee arthroplasty: anterior versus posterior referencing. Knee Surg Relat Res 32(1):10

    Article  Google Scholar 

  8. Courtney PM, Lee GC (2017) Early outcomes of kinematic alignment in primary total knee arthroplasty: a meta-analysis of the literature. J Arthroplasty 32(6):2028–2032 (e2021)

    Article  Google Scholar 

  9. Delport H, Labey L, Innocenti B, De Corte R, Vander Sloten J, Bellemans J (2015) Restoration of constitutional alignment in TKA leads to more physiological strains in the collateral ligaments. Knee Surg Sports Traumatol Arthrosc 23(8):2159–2169

    Article  Google Scholar 

  10. Dossett HG, Estrada NA, Swartz GJ, LeFevre GW, Kwasman BG (2014) A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Joint J 96-b(7):907–913

    Article  CAS  Google Scholar 

  11. Ghosh KM, Merican AM, Iranpour F, Deehan DJ, Amis AA (2012) Length-change patterns of the collateral ligaments after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(7):1349–1356

    Article  Google Scholar 

  12. Hirschmann MT, Friederich NF, Becker R, Karlsson J (2019) Personalised medicine in knee arthroplasty: we need more science! Knee Surg Sports Traumatol Arthrosc 27(5):1357–1358

    Article  Google Scholar 

  13. Hirschmann MT, Karlsson J, Becker R (2018) Hot topic: alignment in total knee arthroplasty-systematic versus more individualised alignment strategies. Knee Surg Sports Traumatol Arthrosc 26(6):1587–1588

    Article  Google Scholar 

  14. Hirschmann MT, Moser LB, Amsler F, Behrend H, Leclerq V, Hess S (2019) Functional knee phenotypes: a novel classification for phenotyping the coronal lower limb alignment based on the native alignment in young non-osteoarthritic patients. Knee Surg Sports Traumatol Arthrosc 27(5):1394–1402

    Article  Google Scholar 

  15. Howell SM, Papadopoulos S, Kuznik KT, Hull ML (2013) Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg Sports Traumatol Arthrosc 21(10):2271–2280

    Article  Google Scholar 

  16. Jeffcote B, Nicholls R, Schirm A, Kuster MS (2007) The variation in medial and lateral collateral ligament strain and tibiofemoral forces following changes in the flexion and extension gaps in total knee replacement. A laboratory experiment using cadaver knees. J Bone Joint Surg Br 89(11):1528–1533

    Article  CAS  Google Scholar 

  17. Ji HM, Han J, Jin DS, Seo H, Won YY (2016) Kinematically aligned TKA can align knee joint line to horizontal. Knee Surg Sports Traumatol Arthrosc 24(8):2436–2441

    Article  Google Scholar 

  18. Jung SH, Cho MR, Song SK (2020) Appropriateness of the use of navigation system in total knee arthroplasty. Clin Orthop Surg 12(3):324–329

    Article  Google Scholar 

  19. Kim K, Kim J, Lee D, Lim S, Eom J (2019) The accuracy of alignment determined by patient-specific instrumentation system in total knee arthroplasty. Knee Surg Relat Res 31(1):19–24

    Article  Google Scholar 

  20. Koh IJ, Chalmers CE, Lin CC, Park SB, McGarry MH, Lee TQ (2021) Posterior stabilized total knee arthroplasty reproduces natural joint laxity compared to normal in kinematically aligned total knee arthroplasty: a matched pair cadaveric study. Arch Orthop Trauma Surg 141(1):119–127

    Article  Google Scholar 

  21. Koh IJ, Kwak DS, Kim TK, Park IJ, In Y (2014) How effective is multiple needle puncturing for medial soft tissue balancing during total knee arthroplasty? A cadaveric study. J Arthroplasty 29(12):2478–2483

    Article  Google Scholar 

  22. Koh IJ, Lin CC, Patel NA, Chalmers CE, Maniglio M, Han SB et al (2019) Kinematically aligned total knee arthroplasty reproduces more native rollback and laxity than mechanically aligned total knee arthroplasty: a matched pair cadaveric study. Orthop Traumatol Surg Res 105(4):605–611

    Article  Google Scholar 

  23. Koh IJ, Park IJ, Lin CC, Patel NA, Chalmers CE, Maniglio M et al (2019) Kinematically aligned total knee arthroplasty reproduces native patellofemoral biomechanics during deep knee flexion. Knee Surg Sports Traumatol Arthrosc 27(5):1520–1528

    Article  Google Scholar 

  24. LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L (2007) The anatomy of the medial part of the knee. J Bone Joint Surg Am 89(9):2000–2010

    Article  Google Scholar 

  25. Lee YS, Howell SM, Won YY, Lee OS, Lee SH, Vahedi H et al (2017) Kinematic alignment is a possible alternative to mechanical alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25(11):3467–3479

    Article  Google Scholar 

  26. Maderbacher G, Keshmiri A, Krieg B, Greimel F, Grifka J, Baier C (2019) Kinematic component alignment in total knee arthroplasty leads to better restoration of natural tibiofemoral kinematics compared to mechanic alignment. Knee Surg Sports Traumatol Arthrosc 27(5):1427–1433

    Article  Google Scholar 

  27. Nam D, Nunley RM, Barrack RL (2014) Patient dissatisfaction following total knee replacement: a growing concern? Bone Joint J 96-B(11):96–100

    Article  CAS  Google Scholar 

  28. Nedopil AJ, Singh AK, Howell SM, Hull ML (2018) Does calipered kinematically aligned TKA restore native left to right symmetry of the lower limb and improve function? J Arthroplasty 33(2):398–406

    Article  Google Scholar 

  29. Provenzano PP, Heisey D, Hayashi K, Lakes R, Vanderby R Jr (1985) (2002) Subfailure damage in ligament: a structural and cellular evaluation. J Appl Physiol 92(1):362–371

    Article  Google Scholar 

  30. Song SJ, Park CH, Bae DK (2019) What to know for selecting cruciate-retaining or posterior-stabilized total knee arthroplasty. Clin Orthop Surg 11(2):142–150

    Article  Google Scholar 

  31. Thienpont E, Bellemans J, Victor J, Becker R (2013) Alignment in total knee arthroplasty, still more questions than answers. Knee Surg Sports Traumatol Arthrosc 21(10):2191–2193

    Article  Google Scholar 

  32. Victor J, Wong P, Witvrouw E, Sloten JV, Bellemans J (2009) How isometric are the medial patellofemoral, superficial medial collateral, and lateral collateral ligaments of the knee? Am J Sports Med 37(10):2028–2036

    Article  Google Scholar 

  33. Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    Article  Google Scholar 

  34. Zalzal P, Papini M, Petruccelli D, de Beer J, Winemaker MJ (2004) An in vivo biomechanical analysis of the soft-tissue envelope of osteoarthritic knees. J Arthroplasty 19(2):217–223

    Article  Google Scholar 

Download references

Acknowledgements

We thank Smith+Nephew, Korea for kindly providing all surgical instruments used in this study. We thank Su Gu Chai, B.S., Seung Jun Lee, P.R.S., of Smith+Nephew, Korea, and Ki Joon Yoo, B.A., Jae Young Sung, B.S., and Hyunggu Han, B.A., of Daon HealthCare, Korea for their assistance in the testing of specimens. We also thank the cadaver donors and their families.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019 R1F1A 1057842 and No. 2017M3A9E9073545). The funding source did not play any scientific role in performing this study.

Author information

Authors and Affiliations

Authors

Contributions

DL: conducted the test, drafted the manuscript, supervised the project. D-SK: conducted the test, drafted the manuscript. MKim: conducted the test, acquired and analyzed the data, drafted the manuscript. SK: conducted the test. H-JC: conducted the test. JHC: conducted the test. IJK: conceptualized the study, designed the study, conducted the test, acquired and analyzed the data, drafted the manuscript, supervised the project.

Corresponding author

Correspondence to In Jun Koh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, D., Kwak, DS., Kim, M. et al. Kinematically aligned total knee arthroplasty restores more native medial collateral ligament strain than mechanically aligned total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 30, 2815–2823 (2022). https://doi.org/10.1007/s00167-021-06680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06680-y

Keywords

Navigation