Skip to main content
Log in

Anterior laxity and patient-reported outcomes 7 years after ACL reconstruction with a fresh-frozen tibialis allograft

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

After reconstructing a torn ACL with a soft tissue allograft, the long-term healing process of graft maturation following the short-term healing process of graft incorporation into the bone tunnels might lead to recurring instability and concomitant decreases in the activity level, function, and patient satisfaction. Relying on roentgen stereophotogrammetric analysis (RSA), the primary purpose was to determine whether anterior laxity increased and whether patient-reported outcomes declined between 1 and 7 years for a particular graft construct, surgical technique, and rehabilitation programme.

Methods

Eighteen of 19 patients, who participated in an earlier RSA study which extended to 1 year after the surgical procedure, were contacted 7 years after the surgical procedure. An examiner, different from the treating surgeon, measured anterior laxity under 150 N of anterior force using RSA in 16 patients and obtained outcome scores in 17 patients. One patient moved abroad and could not be contacted. One patient reinjured his reconstructed ACL and was excluded.

Results

The average increase in anterior laxity of 1.5 ± 2.1 mm between 1 and 7 years after surgery was not significant (p = 0.08), and the average increase in anterior laxity of 2.7 ± 2.3 mm between the day of surgery and 7 years was significant (p < 0.001). There were no significant declines in activity (median Tegner score, 6 at 1 year, 6 at 7 years), function (average Lysholm score, 94 at 1 year, 91 at 7 years), and subjective satisfaction (average International Knee Documentation Committee score, 90 at 1 year, 87 at 7 years) between 1 and 7 years after surgery.

Conclusion

In demonstrating that the ACL graft construct remains functional in the long term, this study supports the use of a fresh-frozen tibialis allograft in patients with an average age of 37 years at the time of surgery when used in conjunction with a surgical technique which avoids roof and PCL impingement, uses slippage-resistant fixation devices, and allows brace-free, self-paced rehabilitation.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9(4):394–405

    Article  CAS  PubMed  Google Scholar 

  2. Almqvist KF, Willaert P, De Brabandere S, Criel K, Verdonk R (2009) A long-term study of anterior cruciate ligament allograft reconstruction. Knee Surg Sports Traumatol Arthrosc 17(7):818–822

    Article  CAS  PubMed  Google Scholar 

  3. Amiel D, Kleiner JB, Roux RD, Harwood FL, Akeson WH (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172

    Article  CAS  PubMed  Google Scholar 

  4. Asik M, Sen C, Tuncay I, Erdil M, Avci C, Taser OF (2007) The mid- to long-term results of the anterior cruciate ligament reconstruction with hamstring tendons using Transfix technique. Knee Surg Sports Traumatol Arthrosc 15(8):965–972

    Article  PubMed  Google Scholar 

  5. Beynnon BD, Johnson RJ, Naud S, Fleming BC, Abate JA, Brattbakk B, Nichols CE (2011) Accelerated versus nonaccelerated rehabilitation after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind investigation evaluating knee joint laxity using Roentgen stereophotogrammetric analysis. Am J Sports Med 39(12):2536–2548

    Article  PubMed  Google Scholar 

  6. Coleridge SD, Amis AA (2004) A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12(5):391–397

    Article  PubMed  Google Scholar 

  7. Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13(6):401–407

    Article  CAS  PubMed  Google Scholar 

  8. Feller J, Hoser C, Webster K (2000) EMG biofeedback assisted KT-1000 evaluation of anterior tibial displacement. Knee Surg Sports Traumatol Arthrosc 8(3):132–136

    Article  CAS  PubMed  Google Scholar 

  9. Fleming BC, Brattbakk B, Peura GD, Badger GJ, Beynnon BD (2002) Measurement of anterior–posterior knee laxity: a comparison of three techniques. J Orthop Res 20(3):421–426

    Article  PubMed  Google Scholar 

  10. Fleming BC, Peura GD, Abate JA, Beynnon BD (2001) Accuracy and repeatability of Roentgen stereophotogrammetric analysis (RSA) for measuring knee laxity in longitudinal studies. J Biomech 34(10):1355–1359

    Article  CAS  PubMed  Google Scholar 

  11. Fleming BC, Renstrom PA, Ohlen G, Johnson RJ, Peura GD, Beynnon BD, Badger GJ (2001) The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. J Orthop Res 19(6):1178–1184

    Article  CAS  PubMed  Google Scholar 

  12. Gifstad T, Sole A, Strand T, Uppheim G, Grontvedt T, Drogset JO (2013) Long-term follow-up of patellar tendon grafts or hamstring tendon grafts in endoscopic ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 21(3):576–583

    Article  PubMed  Google Scholar 

  13. Howell SM, Gittins ME, Gottlieb JE, Traina SM, Zoellner TM (2001) The relationship between the angle of the tibial tunnel in the coronal plane and loss of flexion and anterior laxity after anterior cruciate ligament reconstruction. Am J Sport Med 29(5):567–574

    CAS  Google Scholar 

  14. Howell SM, Taylor MA (1993) Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof. J Bone Joint Surg 75A(7):1044–1055

    Article  Google Scholar 

  15. Howell SM, Wallace MP, Hull ML, Deutsch ML (1999) Evaluation of the single-incision arthroscopic technique for anterior cruciate ligament replacement. A study of tibial tunnel placement, intraoperative graft tension, and stability. Am J Sports Med 27(3):284–293

    CAS  PubMed  Google Scholar 

  16. Isberg J, Faxen E, Brandsson S, Eriksson BI, Karrholm J, Karlsson J (2006) Early active extension after anterior cruciate ligament reconstruction does not result in increased laxity of the knee. Knee Surg Sports Traumatol Arthrosc 14(11):1108–1115

    Article  PubMed  Google Scholar 

  17. Jonsson H, Elmqvist LG, Karrholm J, Fugl-Meyer A (1992) Lengthening of anterior cruciate ligament graft. Roentgen stereophotogrammetry of 32 cases 2 years after repair. Acta Orthop Scand 63(6):587–592

    CAS  PubMed  Google Scholar 

  18. Jorn LP, Friden T, Ryd L, Lindstrand A (1997) Persistent stability 3 years after reconstruction of the anterior cruciate ligament: a radiostereometric analysis (RSA) of 20 patients. Acta Orthop Scand 68(5):427–429

    Article  CAS  PubMed  Google Scholar 

  19. Khan R, Konyves A, Rama KR, Thomas R, Amis AA (2006) RSA can measure ACL graft stretching and migration: development of a new method. Clin Orthop Relat Res 448:139–145

    Article  PubMed  Google Scholar 

  20. Krych AJ, Jackson JD, Hoskin TL, Dahm DL (2008) A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy 24(3):292–298

    Article  PubMed  Google Scholar 

  21. Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27(1):35–43

    CAS  PubMed  Google Scholar 

  22. Matsumoto A, Howell SM (2005) The EZLoc: a simple, rigid femoral fixation device for a soft tissue anterior cruciate ligament graft. Tech Orthop 20(3):238–244

    Article  Google Scholar 

  23. Ng GY, Oakes BW, Deacon OW, McLean ID, Eyre DR (1996) Long-term study of the biochemistry and biomechanics of anterior cruciate ligament-patellar tendon autografts in goats. J Orthop Res 14(6):851–856

    Article  CAS  PubMed  Google Scholar 

  24. Pearle AD, McAllister D, Howell SM (2015) Rationale for strategic graft placement in anterior cruciate ligament reconstruction: IDEAL femoral tunnel position. Am J Orthop 44(6):253–258

    PubMed  Google Scholar 

  25. Persson A, Kjellsen AB, Fjeldsgaard K, Engebretsen L, Espehaug B, Fevang JM (2015) Registry data highlight increased revision rates for endobutton/biosure HA in ACL reconstruction with hamstring tendon autograft: a nationwide cohort study from the Norwegian Knee Ligament Registry, 2004–2013. Am J Sports Med 43(9):2182–2188

    Article  PubMed  Google Scholar 

  26. Petersen W, Laprell H (2000) Insertion of autologous tendon grafts to the bone: a histological and immunohistochemical study of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 8(1):26–31

    Article  CAS  PubMed  Google Scholar 

  27. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind MC (2013) Increased risk of revision after anteromedial compared with transtibial drilling of the femoral tunnel during primary anterior cruciate ligament reconstruction: results from the Danish Knee Ligament Reconstruction Register. Arthroscopy 29(1):98–105

    Article  PubMed  Google Scholar 

  28. Rappe M, Horodyski M, Meister K, Indelicato PA (2007) Nonirradiated versus irradiated Achilles allograft: in vivo failure comparison. Am J Sports Med 35(10):1653–1658

    Article  PubMed  Google Scholar 

  29. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel: a biomechanical and histological study in the dog. J Bone Joint Surg 75-A(12):1795–1803

    Article  Google Scholar 

  30. Roe J, Pinczewski LA, Russell VJ, Salmon LJ, Kawamata T, Chew M (2005) A 7-year follow-up of patellar tendon and hamstring tendon grafts for arthroscopic anterior cruciate ligament reconstruction: differences and similarities. Am J Sports Med 33(9):1337–1345

    Article  PubMed  Google Scholar 

  31. Roos PJ, Hull ML, Howell SM (2004) Lengthening of double-looped tendon graft constructs in three regions after cyclic loading: a study using Roentgen stereophotogrammetric analysis. J Orthop Res 22(4):839–846

    Article  CAS  PubMed  Google Scholar 

  32. Roos PJ, Neu CP, Hull ML, Howell SM (2005) A new tibial coordinate system improves the precision of anterior–posterior knee laxity measurements: a cadaveric study using Roentgen stereophotogrammetric analysis. J Orthop Res 23(2):327–333

    Article  CAS  PubMed  Google Scholar 

  33. Rougraff B, Shelbourne KD, Gerth PK, Warner J (1993) Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sport Med 21(2):277–284

    Article  CAS  Google Scholar 

  34. Shelbourne KD, Gray T, Haro M (2009) Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med 37(2):246–251

    Article  PubMed  Google Scholar 

  35. Shino K, Inoue M, Horibe S, Nakata K, Maeda A, Ono K (1991) Surface blood flow and histology of human anterior cruciate ligament allografts. Arthroscopy 7(2):171–176

    Article  CAS  PubMed  Google Scholar 

  36. Simmons R, Howell SM, Hull ML (2003) Effect of the angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament on tension of an anterior cruciate ligament graft: an in vitro study. J Bone Joint Surg 85-A(6):1018–1029

    Article  PubMed  Google Scholar 

  37. Singhatat W, Lawhorn KW, Howell SM, Hull ML (2002) How four weeks of implantation affect the strength and stiffness of a tendon graft in a bone tunnel: a study of two fixation devices in an extraarticular model in ovine. Am J Sport Med 30(4):506–513

    Google Scholar 

  38. Smith C, Hull ML, Howell SM (2008) Roentgen stereophotogrammetric analysis methods for determining ten causes of lengthening of a soft-tissue anterior cruciate ligament graft construct. J Biomech Eng 130(4):0410021–04100210

    Google Scholar 

  39. Smith CK, Howell SM, Hull ML (2011) Anterior laxity, slippage, and recovery of function in the first year after tibialis allograft anterior cruciate ligament reconstruction. Am J Sports Med 39(1):78–88

    Article  PubMed  Google Scholar 

  40. Smith CK, Hull ML, Howell SM (2010) Does graft construct lengthening at the fixations cause an increase in anterior laxity following anterior cruciate ligament reconstruction in vivo? J Biomech Eng 132(8):0810011–0810018

    Google Scholar 

  41. Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15(3):207–213

    Article  CAS  PubMed  Google Scholar 

  42. Zaffagnini S, Bruni D, Marcheggiani Muccioli GM, Bonanzinga T, Lopomo N, Bignozzi S, Marcacci M (2011) Single-bundle patellar tendon versus non-anatomical double-bundle hamstrings ACL reconstruction: a prospective randomized study at 8-year minimum follow-up. Knee Surg Sports Traumatol Arthrosc 19(3):390–397

    Article  PubMed  Google Scholar 

  43. Zaffagnini S, De Pasquale V, Marchesini Reggiani L, Russo A, Agati P, Bacchelli B, Marcacci M (2010) Electron microscopy of the remodelling process in hamstring tendon used as ACL graft. Knee Surg Sports Traumatol Arthrosc 18(8):1052–1058

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Hull.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

No funding was received for this study.

Ethical approval

All of the 19 patients who participated in our earlier study with 1-year follow up or their relatives were contacted for participation in the present study with 7-year follow up

Informed consent

Informed consent was obtained from all 17 study patients and the study was approved by the Institutional Review Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meike, E., Howell, S.M. & Hull, M.L. Anterior laxity and patient-reported outcomes 7 years after ACL reconstruction with a fresh-frozen tibialis allograft. Knee Surg Sports Traumatol Arthrosc 25, 1500–1509 (2017). https://doi.org/10.1007/s00167-016-4351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4351-3

Keywords

Navigation