Skip to main content
Log in

Increased chondrocyte seeding density has no positive effect on cartilage repair in an MPEG-PLGA scaffold

  • Experimental study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

This study investigates the effect of cell seeding density on cartilage repair in matrix-assisted chondrocyte implantation in vitro and in vivo.

Methods

In vitro: Four different cell seeding densities of human chondrocytes were seeded onto a porous methoxy-polyethylene glycol-polylactic-co-glycolic acid scaffold (MPEG-PLGA) polymer scaffold ASEED™ (1.2 × 106, 4.0 × 106, 1.2 × 107 and 2.0 × 107 cells/cm3). The cartilage repair response was evaluated by relative gene expression of the chondrogenic markers sox9, collagen types I, II and X, and aggrecan, total DNA content and sulphated glycosaminoglycan synthesis. In vivo: Using a New Zealand white rabbit intercondylar osteochondral defect model, three different cell seeding densities (1.2 × 106, 4.0 × 106 and 1.2 × 107 cells/cm3) were tested with an empty scaffold as control. The cartilage repair response was evaluated using O’Driscoll score.

Results

In vitro: A significant difference (p < 0.05) in total DNA content was found at day 2 but not at day 7. The low cell seeding densities yielded the highest GAG content (p < 0.001) at day 7. Collagen type I was highest (p < 0.01) at the lowest density at day 7. In vivo: No significant difference was found between the 4 groups.

Conclusions

No positive effect on cartilage repair was found using increased cell seeding density.

Level of evidence

Controlled experimental study, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbott J, Holtzer H (1966) The loss of phenotypic traits by differentiated cells. 3. The reversible behaviour of chondrocytes in primary cultures. J Cell Biol 28(3):473–487

    Article  PubMed  CAS  Google Scholar 

  2. Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthr Cartil 17(6):705–713

    Article  PubMed  CAS  Google Scholar 

  3. Benya PD, Padilla SR, Nimni ME (1978) Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 15(4):1313–1321

    Article  PubMed  CAS  Google Scholar 

  4. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  PubMed  CAS  Google Scholar 

  5. Chiang H, Liao CJ, Wang YH, Huang HY, Chen CN, Hsieh CH, Huang YY, Jiang CC (2010) Comparison of articular cartilage repair by autologous chondrocytes with and without in vitro cultivation. Tissue Eng Part C Methods 16(2):291–300

    Article  PubMed  CAS  Google Scholar 

  6. Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV, Bunger CE, Lind M (2011) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1692-9

  7. Foldager CB, Munir S, Ulrik-Vinther M, Soballe K, Bunger C, Lind M (2009) Validation of suitable house keeping genes for hypoxia-cultured human chondrocytes. BMC Mol Biol 10:94

    Article  PubMed  Google Scholar 

  8. Foldager CB, Nielsen AB, Munir S, Ulrich-Vinther M, Soballe K, Bunger C, Lind M (2011) Combined 3D and hypoxic culture improves cartilage-specific gene expression in human chondrocytes. Acta Orthop 82(2):234–240

    Article  PubMed  Google Scholar 

  9. Francioli SE, Candrian C, Martin K, Heberer M, Martin I, Barbero A (2010) Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. J Biomed Mater Res A 95(3):924–931

    PubMed  Google Scholar 

  10. Goldring MB, Birkhead J, Sandell LJ, Kimura T, Krane SM (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest 82(6):2026–2037

    Article  PubMed  CAS  Google Scholar 

  11. Handley CJ, Bateman JF, Oakes BW, Lowther DA (1975) Characterization of the collagen synthesized by cultured cartilage cells. Biochim Biophys Acta 386(2):444–450

    Article  PubMed  CAS  Google Scholar 

  12. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Jt Surg Am 89(10):2105–2112

    Article  Google Scholar 

  13. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124

    PubMed  Google Scholar 

  14. Lind M, Larsen A, Clausen C, Osther K, Everland H (2008) Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg Sports Traumatol Arthrosc 16(7):690–698

    Article  PubMed  Google Scholar 

  15. Maehara H, Sotome S, Yoshii T, Torigoe I, Kawasaki Y, Sugata Y, Yuasa M, Hirano M, Mochizuki N, Kikuchi M, Shinomiya K, Okawa A (2010) Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J Orthop Res 28(5):677–686

    PubMed  CAS  Google Scholar 

  16. Mahmoudifar N, Doran PM (2006) Effect of seeding and bioreactor culture conditions on the development of human tissue-engineered cartilage. Tissue Eng 12(6):1675–1685

    Article  PubMed  CAS  Google Scholar 

  17. Mrosek EH, Schagemann JC, Chung HW, Fitzsimmons JS, Yaszemski MJ, Mardones RM, O’Driscoll SW, Reinholz GG (2010) Porous tantalum and poly-epsilon-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits. J Orthop Res 28(2):141–148

    PubMed  CAS  Google Scholar 

  18. O’Driscoll SW, Keeley FW, Salter RB (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am 70(4):595–606

    PubMed  Google Scholar 

  19. Oakes BW, Handley CJ, Lisner F, Lowther DA (1977) An ultrastructural and biochemical study of high density primary cultures of embryonic chick chondrocytes. J Sports Exp Morphol 38:239–263

    CAS  Google Scholar 

  20. Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246

    Article  PubMed  Google Scholar 

  21. Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil 10(1):62–70

    Article  PubMed  CAS  Google Scholar 

  22. Stoddart MJ, Grad S, Eglin D, Alini M (2009) Cells and biomaterials in cartilage tissue engineering. Regen Med 4(1):81–98

    Article  PubMed  CAS  Google Scholar 

  23. Stokes DG, Liu G, Coimbra IB, Piera-Velazquez S, Crowl RM, Jimenez SA (2002) Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthr Rheum 46(2):404–419

    Article  CAS  Google Scholar 

  24. von der Mark K, Gauss V, von der Mark H, Muller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267(5611):531–532

    Article  PubMed  Google Scholar 

  25. Willers C, Chen J, Wood D, Xu J, Zheng MH (2005) Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng 11(7–8):1065–1076

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Danish National Advanced Research Foundation supported the project financially. We would like to thank bioanalyst Anette Baatrup and laboratory technicians Anna Bay Nielsen and Jane Pauli Larsen for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Møller Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, O.M., Foldager, C.B., Christensen, B.B. et al. Increased chondrocyte seeding density has no positive effect on cartilage repair in an MPEG-PLGA scaffold. Knee Surg Sports Traumatol Arthrosc 21, 485–493 (2013). https://doi.org/10.1007/s00167-012-1996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-1996-4

Keywords

Navigation