Skip to main content
Log in

Width is a more important predictor in graft extrusion than length using plain radiographic sizing in lateral meniscal transplantation

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Plain radiographs are frequently used to select appropriately sized meniscal allografts, of which the width and length cannot be always perfectly matched. The objective of this study was to decide which of these dimensions should be matched with a more priority considering proper position of the lateral meniscal transplants.

Methods

The positions of 34 lateral, fresh-frozen meniscal allografts, transplanted using the central bone bridge method, were evaluated by magnetic resonance imaging (MRI) 2 days after surgery. A size mismatch was defined as a difference between preoperative radiographic size and a real dimension of the transplants. The lateral subluxation of the mid-body on the coronal plane and the anterior and posterior horn positions on the sagittal plane were estimated on the MRIs. It was evaluated whether size mismatches were associated with the meniscal subluxation beyond articular cartilage margin on each plane.

Results

The mean lateral subluxation of the mid-body on the center of coronal sections was 1.7 ± 1.8 mm. The anterior and posterior horns were located 2.0 ± 2.1 mm and −3.8 ± 2.7 mm from the articular edge, respectively, in the center of sagittal images. Lateral subluxation was significantly associated with width mismatch (r = 0.415–0.486, P < 0.05), but length mismatch was not significantly correlated with the anterior or posterior horn position on sagittal images (n.s.).

Conclusion

The results of this study suggest that width matching using plain radiographs would be more reliable than length matching when it is sought to assure adequate positioning of meniscal transplants, if both dimensions cannot be simultaneously matched.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alhalki MM, Hull ML, Howell SM (2000) Contact mechanics of the medial tibial plateau after implantation of a medial meniscal allograft. A human cadaveric study. Am J Sports Med 28:370–376

    PubMed  CAS  Google Scholar 

  2. Chen MI, Branch TP, Hutton WC (1996) Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12:174–181

    Article  PubMed  CAS  Google Scholar 

  3. Dienst M, Greis PE, Ellis BJ, Bachus KN, Burks RT (2007) Effect of lateral meniscal allograft sizing on contact mechanics of the lateral tibial plateau: an experimental study in human cadaveric knee joints. Am J Sports Med 35:34–42

    Article  PubMed  Google Scholar 

  4. Donahue TL, Hull ML, Howell SM (2006) New algorithm for selecting meniscal allografts that best match the size and shape of the damaged meniscus. J Orthop Res 24:1535–1543

    Article  PubMed  Google Scholar 

  5. Ha JK, Sung JH, Shim JC, Seo JG, Kim JG (2011) Medial meniscus allograft transplantation using a modified bone plug technique: clinical, radiologic, and arthroscopic results. Arthroscopy 27:944–950

    Article  PubMed  Google Scholar 

  6. Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90:2724–2734

    Article  PubMed  Google Scholar 

  7. Hunter DJ, Buck R, Vignon E, Eckstein F, Brandt K, Mazzuca SA, Wyman BT, Otterness I, Hellio Le Graverand MP (2009) Relation of regional articular cartilage morphometry and meniscal position by MRI to joint space width in knee radiographs. Osteoarthr Cartil 17:1170–1176

    Article  PubMed  CAS  Google Scholar 

  8. Jang SH, Kim JG, Ha JG, Shim JC (2011) Reducing the size of the meniscal allograft decreases the percentage of extrusion after meniscal allograft transplantation. Arthroscopy 27:914–922

    Article  PubMed  Google Scholar 

  9. Kim JM, Bin SI (2006) Meniscal allograft transplantation after total meniscectomy of torn discoid lateral meniscus. Arthroscopy 22:1344–1350

    Article  PubMed  Google Scholar 

  10. Lee DH, Kim SB, Kim TH, Cha EJ, Bin SI (2010) Midterm outcomes after meniscal allograft transplantation: comparison of cases with extrusion versus without extrusion. Am J Sports Med 38:247–254

    Article  PubMed  Google Scholar 

  11. Lee DH, Kim TH, Lee SH, Kim CW, Kim JM, Bin SI (2008) Evaluation of meniscus allograft transplantation with serial magnetic resonance imaging during the first postoperative year: focus on graft extrusion. Arthroscopy 24:1115–1121

    Article  PubMed  Google Scholar 

  12. Lee YS, Kim JG, Lim HC, Park JH, Park JW, Kim JG (2009) The relationship between tibial slope and meniscal insertion. Knee Surg Sports Traumatol Arthrosc 17:1416–1420

    Article  PubMed  Google Scholar 

  13. Matava MJ (2007) Meniscal allograft transplantation: a systematic review. Clin Orthop Relat Res 455:142–157

    Article  PubMed  Google Scholar 

  14. McDermott ID, Sharifi F, Bull AM, Gupte CM, Thomas RW, Amis AA (2004) An anatomical study of meniscal allograft sizing. Knee Surg Sports Traumatol Arthrosc 12:130–135

    Article  PubMed  CAS  Google Scholar 

  15. Miller TT, Staron RB, Feldman F, Cepel E (1997) Meniscal position on routine MR imaging of the knee. Skeletal Radiol 26:424–427

    Article  PubMed  CAS  Google Scholar 

  16. Noyes FR, Barber-Westin SD, Chen RC (2011) Repair of complex and avascular meniscal tears and meniscal transplantation. Instr Course Lect 60:415–437

    PubMed  Google Scholar 

  17. Paletta GA Jr, Manning T, Snell E, Parker R, Bergfeld J (1997) The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 25:692–698

    Article  PubMed  Google Scholar 

  18. Pollard ME, Kang Q, Berg EE (1995) Radiographic sizing for meniscal transplantation. Arthroscopy 11:684–687

    Article  PubMed  CAS  Google Scholar 

  19. Prodromos CC, Joyce BT, Keller BL, Murphy BJ, Shi K (2007) Magnetic resonance imaging measurement of the contralateral normal meniscus is a more accurate method of determining meniscal allograft size than radiographic measurement of the recipient tibial plateau. Arthroscopy 23:1174–1179

    Article  PubMed  Google Scholar 

  20. Rankin M, Noyes FR, Barber-Westin SD, Hushek SG, Seow A (2006) Human meniscus allografts’ in vivo size and motion characteristics: magnetic resonance imaging assessment under weight bearing conditions. Am J Sports Med 34:98–107

    Article  PubMed  Google Scholar 

  21. Rijk PC (2004) Meniscal allograft transplantation–part I: background, results, graft selection and preservation, and surgical considerations. Arthroscopy 20:728–743

    Article  PubMed  Google Scholar 

  22. Sekaran SV, Hull ML, Howell SM (2002) Nonanatomic location of the posterior horn of a medial meniscal autograft implanted in a cadaveric knee adversely affects the pressure distribution on the tibial plateau. Am J Sports Med 30:74–82

    PubMed  Google Scholar 

  23. Shaffer B, Kennedy S, Klimkiewicz J, Yao L (2000) Preoperative sizing of meniscal allografts in meniscus transplantation. Am J Sports Med 28:524–533

    PubMed  CAS  Google Scholar 

  24. Tienen TG, Verdonschot N, Heijkants RG, Buma P, Scholten JG, van Kampen A, Veth RP (2004) Prosthetic replacement of the medial meniscus in cadaveric knees: does the prosthesis mimic the functional behavior of the native meniscus? Am J Sports Med 32:1182–1188

    Article  PubMed  CAS  Google Scholar 

  25. Van Thiel GS, Verma N, Yanke A, Basu S, Farr J, Cole B (2009) Meniscal allograft size can be predicted by height, weight, and gender. Arthroscopy 25:722–727

    Article  PubMed  Google Scholar 

  26. Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM (1999) Meniscal movement. An in vivo study using dynamic MRI. J Bone Joint Surg Br 81:37–41

    Article  PubMed  CAS  Google Scholar 

  27. Verdonk P, Depaepe Y, Desmyter S, De Muynck M, Almqvist KF, Verstraete K, Verdonk R (2004) Normal and transplanted lateral knee menisci: evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surg Sports Traumatol Arthrosc 12:411–419

    Article  PubMed  Google Scholar 

  28. Wilmes P, Pape D, Kohn D, Seil R (2007) The reproducibility of radiographic measurement of lateral meniscus horn position. Arthroscopy 23:1079–1086

    Article  PubMed  Google Scholar 

  29. Wirth CJ, Peters G, Milachowski KA, Weismeier KG, Kohn D (2002) Long-term results of meniscal allograft transplantation. Am J Sports Med 30:174–181

    PubMed  Google Scholar 

  30. Yoon JR, Kim TS, Lee YM, Jang HW, Kim YC, Yang JH (2011) Transpatellar approach in lateral meniscal allograft transplantation using the keyhole method: can we prevent graft extrusion? Knee Surg Sports Traumatol Arthrosc 19:214–217

    Article  PubMed  Google Scholar 

  31. Yoon JR, Kim TS, Lim HC, Lim HT, Yang JH (2011) Is radiographic measurement of bony landmarks reliable for lateral meniscal sizing? Am J Sports Med 39:582–589

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Il Bin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BS., Chung, JW., Kim, JM. et al. Width is a more important predictor in graft extrusion than length using plain radiographic sizing in lateral meniscal transplantation. Knee Surg Sports Traumatol Arthrosc 20, 179–186 (2012). https://doi.org/10.1007/s00167-011-1712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1712-9

Keywords

Navigation