Skip to main content
Log in

Transient Stokes flow past a spherical droplet with a stagnant cap due to contaminated surfactant layer

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider a viscous droplet migrating in a viscous fluid of a different viscosity. Further, we assume that the surface of the droplet is partially contaminated with a stagnant layer of surfactant (surface active agent which reduces the interfacial tension). We analyze the effects of the following phenomena associated with the thermocapillary migration of a droplet in a transient Stokes flow. The first is the influence of surfactant cap for an arbitrary cap angle which is partially coated on the droplet surface for both high and low surface Péclet number cases. The second is the influence of the energy changes associated with stretching and shrinkage of the interfacial area elements, when the droplet is in motion. It can be noted that for the vanishing cap angle, both high and low surface Péclet number limits reduce to the case of a pure thermocapillary migration of a droplet in a transient Stokes flow. For a given ambient flow, the migration of the droplet is controlled by the magnitude of the ambient velocity and the surface tension variations due to temperature and surfactant concentration. In particular, these surface tension variations balance the tangential stress balance. Considering axisymmetric transient Stokes flow, we obtain analytical solutions in two limiting cases, namely low and high surface Péclet number. This work considers linear variation of interfacial tension on both thermal and surfactant gradients. The main contribution is pertaining to the capillary drift and the corresponding surfactant transport on the droplet for an axisymmetric hydrodynamic as well as thermal and surfactant fields. We have analyzed the level curves corresponding to stream function and temperature fields, i.e., streamlines and isotherms for various parameters in order to develop a realistic picture of the migration pattern and the influence of thermal fields. We observe that the streamlines in the vicinity of rear end of the droplet show asymmetry due to the surfactant accumulation at that region. Increasing cap angle breaks the symmetry of the induced stream. It is seen that increasing values of nondimensional parameter that accounts for the stretching and shrinkage of the droplet surface immobilizes the surface and offers retardation to the migrating droplet. The variation of migration velocity with time suggests a control mechanism for the migration of the drop under external/surface gradients and hence may serve as a useful tool in applications like targeted drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ahn, K., Kerbage, C., Hunt, T.P., Westervelt, R.M., Link, D.R., Weitz, D.A.: Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88(2), 024104 (2006)

    Article  Google Scholar 

  2. Andreev, V.K.: Influence of the interfacial internal energy on the thermocapillary steady flow. Math. Phys. 10(4), 537–547 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Bafaluy, J., Pagonabarraga, I., Rubi, J.M., Bedeaux, D.: Thermocapillary motion of a drop in a fluid under external gradients. Faxén theorem. Phys. A Stat. Mech. Appl. 213(3), 277–292 (1995)

    Article  Google Scholar 

  4. Balasubramaniam, R., Shankar Subramanian, R.: Thermocapillary migration of a drop: an exact solution with Newtonian interfacial rheology and stretching/shrinkage of interfacial area elements for small Marangoni numbers. Ann. N. Y. Acad. Sci. 1027(1), 303–310 (2004)

    Article  Google Scholar 

  5. Balasubramaniam, R., Subramanian, R.S.: The migration of a drop in a uniform temperature gradient at large Marangoni numbers. Phys. Fluids 12(4), 733–743 (2000)

    Article  MATH  Google Scholar 

  6. Bandopadhyay, A., Mandal, S., Kishore, N.K., Chakraborty, S.: Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553–589 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bekezhanova, V.B., Kabov, O.A.: Influence of internal energy variations of the interface on the stability of film flow. Interfacial Phenom. Heat Transf. 4(2–3), 133 (2016)

    Article  Google Scholar 

  8. Chałupniak, A., Morales-Narváez, E., Merkoçi, A.: Micro and nanomotors in diagnostics. Adv. Drug Deliv. Rev. 95, 104–116 (2015)

    Article  Google Scholar 

  9. Chan, P.C.H., Leal, L.G.: The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92(01), 131–170 (1979)

    Article  MATH  Google Scholar 

  10. Chen, J., Stebe, K.J.: Surfactant-induced retardation of the thermocapillary migration of a droplet. J. Fluid Mech. 340, 35–59 (1997)

    Article  MATH  Google Scholar 

  11. Chisnell, R.F.: The unsteady motion of a drop moving vertically under gravity. J. Fluid Mech. 176, 443–464 (1987)

    Article  MATH  Google Scholar 

  12. Choudhuri, D., Sri Padmavati, B.: A study of an arbitrary unsteady Stokes flow in and around a liquid sphere. Appl. Math. Comput. 243, 644–656 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Choudhuri, D., Raja Sekhar, G.P.: Thermocapillary drift on a spherical drop in a viscous fluid. Phys. Fluids 25(4), 043104 (2013)

    Article  Google Scholar 

  14. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)

    Google Scholar 

  15. Cox, R.G., Brenner, H.: The lateral migration of solid particles in Poiseuille flow-I Theory. Chem. Eng. Sci. 23(2), 147–173 (1968)

    Article  Google Scholar 

  16. Cuenot, B., Magnaudet, J., Spennato, B.: The effects of slightly soluble surfactants on the flow around a spherical bubble. J. Fluid Mech. 339, 25–53 (1997)

    Article  MATH  Google Scholar 

  17. Dalmon, A., Kentheswaran, K., Mialhe, G., Lalanne, B., Tanguy, S.: Fluids-membrane interaction with a full Eulerian approach based on the level set method. J. Comput. Phys. 406, 109171 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Das, S., Mandal, S., Chakraborty, S.: Effect of temperature gradient on the cross-stream migration of a surfactant-laden droplet in Poiseuille flow. J. Fluid Mech. 835, 170–216 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Das, S., Mandal, S., Som, S.K., Chakraborty, S.: Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow. Physics of Fluids 29(1), 012002 (2017)

    Article  Google Scholar 

  20. Davis, R.E., Acrivos, A.: The influence of surfactants on the creeping motion of bubbles. Chem. Eng. Sci. 21(8), 681–685 (1966)

    Article  Google Scholar 

  21. Dhar, A., Burada, P.S., Raja Sekhar, G.P.: Dynamics of a spherical droplet driven by active slip and stress. Int. J. Multiph. Flow 127(103274), 1–13 (2020)

    MathSciNet  Google Scholar 

  22. Dukhin, S.S., Kovalchuk, V.I., Gochev, G.G., Lotfi, M., Krzan, M., Malysa, K., Miller, R.: Dynamics of rear stagnant cap formation at the surface of spherical bubbles rising in surfactant solutions at large Reynolds numbers under conditions of small Marangoni number and slow sorption kinetics. Adv. Colloid Interface Sci. 222, 260–274 (2015)

    Article  Google Scholar 

  23. Dukhin, S.S., Lotfi, M., Kovalchuk, V.I., Bastani, D., Miller, R.: Dynamics of rear stagnant cap formation at the surface of rising bubbles in surfactant solutions at large Reynolds and Marangoni numbers and for slow sorption kinetics. Colloids Surf. A Physicochem. Eng. Asp. 492, 127–137 (2016)

    Article  Google Scholar 

  24. Elzinga, E.R., Banchero, J.T.: Some observations on the mechanics of drops in liquid–liquid systems. AIChE J. 7(3), 394–399 (1961)

    Article  Google Scholar 

  25. Fleckenstein, S., Bothe, D.: Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations. Chem. Eng. Sci. 102, 514–523 (2013)

    Article  Google Scholar 

  26. Garner, F.H., Skelland, A.H.P.: Some factors affecting droplet behaviour in liquid–liquid systems. Chem. Eng. Sci. 4(4), 149–158 (1955)

    Article  Google Scholar 

  27. Goldsmith, H.L., Mason, S.G.: The flow of suspensions through tubes. I. Single spheres, rods, and discs. J. Colloid Sci. 17(5), 448–476 (1962)

    Article  Google Scholar 

  28. Griffith, R.M.: The effect of surfactants on the terminal velocity of drops and bubbles. Chem. Eng. Sci. 17(12), 1057–1070 (1962)

    Article  Google Scholar 

  29. Hanna, J.A., Vlahovska, P.M.: Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22(1), 013102 (2010)

    Article  MATH  Google Scholar 

  30. Harper, J.F., Moore, D.W., Pearson, J.R.A.: The effect of the variation of surface tension with temperature on the motion of bubbles and drops. J. Fluid Mech. 27(2), 361–366 (1967)

    Article  Google Scholar 

  31. Ho, B.P., Leal, L.G.: Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65(02), 365–400 (1974)

    Article  MATH  Google Scholar 

  32. Holbrook, J.A., LeVan, M.D.: Retardation of droplet motion by surfactant. Part 1. Theoretical development and asymptotic solutions. Chem. Eng. Commun. 20(3–4), 191–207 (1983)

    Article  Google Scholar 

  33. Holbrook, J.A., LeVan, M.D.: Retardation of droplet motion by surfactant. Part 2. Numerical solutions for exterior diffusion, surface diffusion, and adsorption kinetics. Chem. Eng. Commun. 20(5–6), 273–290 (1983)

    Article  Google Scholar 

  34. Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J.B.: Microdroplets: a sea of applications? Lab Chip 8(8), 1244–1254 (2008)

    Article  Google Scholar 

  35. Jia, H.W., Zhang, P.: Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change. Int. J. Heat Mass Transf. 110, 43–57 (2017)

    Article  Google Scholar 

  36. Karnis, A., Mason, S.G.: Particle motions in sheared suspensions: XXIII. Wall migration of fluid drops. J. Colloid Interface Sci. 24(2), 164–169 (1967)

    Article  Google Scholar 

  37. Khater, A., Mohammadi, M., Mohamad, A., Nezhad, A.S.: Dynamics of temperature-actuated droplets within microfluidics. Sci. Rep. 9(3832), 1–11 (2019)

    Google Scholar 

  38. Kim, H.S., Subramanian, R.S.: Thermocapillary migration of a droplet with insoluble surfactant: I. Surfactant cap. J. Colloid Interface Sci. 127(2), 417–428 (1989)

    Article  Google Scholar 

  39. Kim, H.S., Subramanian, R.S.: The thermocapillary migration of a droplet with insoluble surfactant: II. General case. J. Colloid Interface Sci. 130(1), 112–129 (1989)

    Article  Google Scholar 

  40. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Butterworth Heinemann, Boston (1991)

    Google Scholar 

  41. Kishore, N., Nalajala, V.S., Chhabra, R.P.: Effects of contamination and shear-thinning fluid viscosity on drag behavior of spherical bubbles. Ind. Eng. Chem. Res. 52(17), 6049–6056 (2013)

    Article  Google Scholar 

  42. Levan, M.D., Newman, J.: The effect of surfactant on the terminal and interfacial velocities of a bubble or drop. AIChE J. 22(4), 695–701 (1976)

    Article  Google Scholar 

  43. Levan, M.D.: Motion of a droplet with Newtonian interface. J. Colloid Interface Sci. 83(1), 11–17 (1981)

    Article  Google Scholar 

  44. Link, D.R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M., Weitz, D.A.: Electric control of droplets in microfluidic devices. Angewandte Chemie International Edition 45(16), 2556–2560 (2006)

    Article  Google Scholar 

  45. Madhavi, T., Golder, A.K., Samanta, A.N., Ray, S.: Studies on bubble dynamics with mass transfer. Chem. Eng. J. 128(2–3), 95–104 (2007)

    Article  Google Scholar 

  46. Mandal, S., Bandopadhyay, A., Chakraborty, S.: Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow. Phys. Rev. E 92(2), 023002 (2015)

    Article  MathSciNet  Google Scholar 

  47. Muradoglu, M., Tryggvason, G.: A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 2238–2262 (2008)

    Article  MATH  Google Scholar 

  48. Narsimhan, V.: The effect of surface viscosity on the translational speed of droplets. Phys. Fluids 30, 081703 (2018)

    Article  Google Scholar 

  49. Pak, O.S., Feng, J., Stone, H.A.: Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Patra, D., Sengupta, S., Duan, W., Zhang, H., Pavlick, R., Sen, A.: Intelligent, self-powered, drug delivery systems. Nanoscale 5, 1273–1283 (2013)

    Article  Google Scholar 

  51. Ponoth, S.S., McLaughlin, J.B.: Numerical simulation of mass transfer for bubbles in water. Chem. Eng. Sci. 55(7), 1237–1255 (2000)

    Article  Google Scholar 

  52. Roldughin, V.I.: Thermal effect at motion of gas bubbles in uniform liquid. Colloids Surf. A: Physicochem. Eng. Asp. 239(1–3), 101–104 (2004)

    Article  Google Scholar 

  53. Rother, M.A.: Surfactant effects on thermocapillary interactions of deformable drops. J. Colloid Interface Sci. 316(2), 699–711 (2007)

    Article  Google Scholar 

  54. Rother, M.A.: The effect of surfactant redistribution on combined gravitational and thermocapillary interactions of deformable drops. Acta Astronaut. 91, 55–68 (2013)

    Article  Google Scholar 

  55. Ryazantsev, Y.S., Velarde, M.G., Rubio, R.G., Guzman, E., Ortega, F., Lopez, P.: Thermo- and soluto-capillarity: passive and active drops. Adv. Colloid Interface Sci. 247, 52–80 (2017)

    Article  Google Scholar 

  56. Saboni, A., Alexandrova, S., Karsheva, M.: Effects of interface contamination on mass transfer into a spherical bubble. J. Chem. Technol. Metall. 50(5), 589–596 (2015)

    Google Scholar 

  57. Saboni, A., Alexandrova, S., Karsheva, M., Gourdon, C.: Mass transfer from a contaminated fluid sphere. AIChE J. 57(7), 1684–1692 (2011)

    Article  Google Scholar 

  58. Saboni, A., Alexandrova, S., Mory, M.: Flow around a contaminated fluid sphere. Int. J. Multiph. Flow 36(6), 503–512 (2010)

    Article  Google Scholar 

  59. Sadhal, S.S., Johnson, R.E.: Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film-exact solution. J. Fluid Mech. 126, 237–250 (1983)

    Article  MATH  Google Scholar 

  60. Sadhal, S.S., Johnson, R.E.: On the deformation of drops and bubbles with varying interfacial tension. Chem. Eng. Commun. 46(1–3), 97–109 (1986)

    Article  Google Scholar 

  61. Savic, P.: Circulation and distortion of liquid drops falling through a viscous medium. National Research Council Canada (1953)

  62. Seemann, R., Brinkmann, M., Pfohl, T., Herminghaus, S.: Droplet based microfluidics. Rep. Prog. Phys. 75(1), 016601 (2011)

    Article  Google Scholar 

  63. Sharanya, V., Raja Sekhar, G.P.: Thermocapillary migration of a spherical drop in an arbitrary transient Stokes flow. Phys. Fluids 27(6), 063104 (2015)

    Article  MATH  Google Scholar 

  64. Sharanya, V., Sekhar, G.P.R., Rohde, C.: The low surface Péclet number regime for surfactant-laden viscous droplets: influence of surfactant concentration, interfacial slip effects and cross migration. Int. J. Multiph. Flow 107, 82–103 (2018)

    Article  MathSciNet  Google Scholar 

  65. Sharanya, V., Sekhar, G.R., Rohde, C.: Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow. Phys. Fluids 31(1), 012110 (2019)

    Article  Google Scholar 

  66. Stan, C.A., Ellerbee, A.K., Guglielmini, L., Stone, H.A., Whitesides, G.M.: The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels. Lab Chip 13(3), 365–376 (2013)

    Article  Google Scholar 

  67. Stone, H.A.: A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A: Fluid Dyn. 2(1), 111–112 (1990)

    Article  Google Scholar 

  68. Subramanian, R.S., Balasubramaniam, R.: The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  69. Teh, S.Y., Lin, R., Hung, L.H., Lee, A.P.: Droplet microfluidics. Lab Chip 8(2), 198–220 (2008)

    Article  Google Scholar 

  70. Torres, F.E., Herbolzheimer, E.: Temperature gradients and drag effects produced by convection of interfacial internal energy around bubbles. Phys. Fluids A: Fluid Dyn. 5(3), 537–549 (1993)

    Article  MATH  Google Scholar 

  71. Wong, H., Rumschitzki, D., Maldarelli, C.: On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 8(11), 3203–3204 (1996)

    Article  MATH  Google Scholar 

  72. Young, N.O., Goldstein, J.S., Block, M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6(03), 350–356 (1959)

    Article  MATH  Google Scholar 

  73. Zakhvataev, V.E.: Effect of variations in the interfacial internal energy on the stability of a two-layer Poiseuille flow. Fluid Dyn. 35(6), 803–812 (2000)

    Article  MATH  Google Scholar 

  74. Zakhvataev, V.E.: Bénard–Marangoni instability of a two-layer system with allowance for variations in the interfacial internal energy. Fluid Dyn. 36(6), 984–988 (2001)

    Article  MATH  Google Scholar 

  75. Zlatanovski, T.: Axisymmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. Q. J. Mech. Appl. Math. 52(1), 111–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors thank the anonymous referees whose critical comments improved the quality of the manuscript. One of the authors (BSP) wishes to acknowledge the financial support by UGC SAP (DSA I), Government of India, No. F.510/13/DSA/2013 (SAP I) and SERB, DST, Government of India, No. MTR/2017/000591.

Funding

Funding was provided at School of Mathematics and Statistics, University of Hyderabad, India, by UGC SAP (DSA I), Government of India, No. F.510/13/DSA/2013 (SAP I) and SERB, DST, Government of India, No. MTR/2017/000591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Raja Sekhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

This is to state that we give our full permission for the publication.

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Additional information

Communicated by Peter Duck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharanya, V., Padmavati, B.S. & Raja Sekhar, G.P. Transient Stokes flow past a spherical droplet with a stagnant cap due to contaminated surfactant layer. Theor. Comput. Fluid Dyn. 35, 783–806 (2021). https://doi.org/10.1007/s00162-021-00592-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00592-w

Keywords

Navigation