Skip to main content
Log in

Toward particle-resolved accuracy in Euler–Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This study presents two different machine learning approaches for the modeling of hydrodynamic force on particles in a particle-laden multiphase flow. Results from particle-resolved direct numerical simulations (PR-DNS) of flow over a random array of stationary particles for eight combinations of particle Reynolds number (\({\mathrm {Re}}\)) and volume fraction (\(\phi \)) are used in the development of the models. The first approach follows a two-step process. In the first flow prediction step, the perturbation flow due to a particle is obtained as an axisymmetric superposable wake using linear regression. In the second force prediction step, the force on a particle is evaluated in terms of the perturbation flow induced by all its neighbors using the generalized Faxén form of the force expression. In the second approach, the force data on all the particles from the PR-DNS simulations are used to develop an artificial neural network (ANN) model for direct prediction of force on a particle. Due to the unavoidable limitation on the number of fully resolved particles in the PR-DNS simulations, direct force prediction with the ANN model tends to over-fit the data and performs poorly in the prediction of test data. In contrast, due to the millions of grid points used in the PR-DNS simulations, accurate flow prediction is possible, which then allows accurate prediction of particle force. This hybridization of multiphase physics and machine learning is particularly important, since it blends the strength of each, and the resulting pairwise interaction extended point-particle model cannot be developed by either physics or machine learning alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In fact, we should also include to this list angular velocity and angular acceleration of each neighbor. This increases the number of independent variables associated with each additional neighbor to 15.

References

  1. Anderson, T., Jackson, R.: Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6(4), 527–539 (1967)

    Article  Google Scholar 

  2. Saffman, P.: On the settling speed of free and fixed suspensions. Stud. Appl. Math. 52(2), 115–127 (1973)

    Article  MathSciNet  Google Scholar 

  3. Capecelatro, J., Desjardins, O.: An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 1–31 (2013)

    Article  MathSciNet  Google Scholar 

  4. Balachandar, S., Liu, K., Lakhote, M.: Self-induced velocity correction for improved drag estimation in Euler–Lagrange point-particle simulations. J. Comput. Phys. 376, 160–185 (2019)

    Article  MathSciNet  Google Scholar 

  5. Maxey, M., Riley, J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)

    Article  Google Scholar 

  6. Balachandar, S., Eaton, J.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010)

    Article  Google Scholar 

  7. Schwarzkopf, J., Sommerfeld, M., Crowe, C., Tsuji, Y.: Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton (2011)

    Google Scholar 

  8. Beetstra, R., van der Hoef, M.A., Kuipers, J.: Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres. AIChE J. 53(2), 489–501 (2007)

    Article  Google Scholar 

  9. Bogner, S., Mohanty, S., Rüde, U.: Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method. Int. J. Multiph. Flow 68, 71–79 (2015)

    Article  MathSciNet  Google Scholar 

  10. Tenneti, S., Garg, R., Subramaniam, S.: Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiph. Flow 37(9), 1072–1092 (2011)

    Article  Google Scholar 

  11. Zaidi, A.A., Tsuji, T., Tanaka, T.: A new relation of drag force for high Stokes number monodisperse spheres by direct numerical simulation. Adv. Powder Technol. 25(6), 1860–1871 (2014)

    Article  Google Scholar 

  12. Tang, Y.Y., Peters, E.F., Kuipers, J.H., Kriebitzsch, S.S., van der Hoef, M.M.: A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE J. 61(2), 688–698 (2015)

    Article  Google Scholar 

  13. Sangani, A., Zhang, D., Prosperetti, A.: The added mass, Basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion. Phys. Fluids A 3(12), 2955–2970 (1991)

    Article  MathSciNet  Google Scholar 

  14. Su, M., Zhao, H.: Modifying the inter-phase drag via solid volume fraction gradient for CFD simulation of fast fluidized beds. AIChE J. 63(7), 2588–2598 (2017)

    Article  Google Scholar 

  15. Rubinstein, G., Ozel, A., Yin, X., Derksen, J., Sundaresan, S.: Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force. J. Fluid Mech. 833, 599–630 (2017)

    Article  MathSciNet  Google Scholar 

  16. Akiki, G., Jackson, T., Balachandar, S.: Force variation within arrays of monodisperse spherical particles. Phys. Rev. Fluids 1(4), 044202 (2016)

    Article  Google Scholar 

  17. Annamalai, S., Balachandar, S.: Faxén form of time-domain force on a sphere in unsteady spatially varying viscous compressible flows. J. Fluid Mech. 816, 381–411 (2017)

    Article  MathSciNet  Google Scholar 

  18. Moore, W., Balachandar, S.: Lagrangian investigation of pseudo-turbulence in multiphase flow using superposable wakes. Phys. Rev. Fluids 4(11), 114301 (2019)

    Article  Google Scholar 

  19. Akiki, G., Jackson, T., Balachandar, S.: Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882–928 (2017)

    Article  MathSciNet  Google Scholar 

  20. Akiki, G., Moore, W., Balachandar, S.: Pairwise-interaction extended point-particle model for particle-laden flows. J. Comput. Phys. 351, 329–357 (2017)

    Article  MathSciNet  Google Scholar 

  21. Moore, W., Balachandar, S., Akiki, G.: A hybrid point-particle force model that combines physical and data-driven approaches. J. Comput. Phys. 385, 187–208 (2019)

    Article  MathSciNet  Google Scholar 

  22. Akiki, G., Balachandar, S.: Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J. Comput. Phys. 307, 34–59 (2016)

    Article  MathSciNet  Google Scholar 

  23. He, L., Tafti, D.: A supervised machine learning approach for predicting variable drag forces on spherical particles in suspension. Powder Technol. 345, 379–389 (2019)

    Article  Google Scholar 

  24. He, L., Tafti, D.: Variation of drag, lift and torque in an assembly of ellipsoidal particles. J. Powder Technol. 335, 409–426 (2018)

    Article  Google Scholar 

  25. He, L., Tafti, D.: Heat transfer in an assembly of ellipsoidal particles at low to moderate Reynolds numbers. Int. J. Heat Mass Transf. 114, 324–336 (2018)

    Article  Google Scholar 

  26. Thiam, E., Masi, E., Climent, E., Simonin, O., Vincent, S.: Particle-resolved numerical simulations of the gas-solid heat transfer in arrays of random motionless particles. Acta Mech. 230(2), 541–567 (2019)

    Article  MathSciNet  Google Scholar 

  27. Ireland, P., Desjardins, O.: Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. J. Comput. Phys. 338, 405–430 (2017)

    Article  MathSciNet  Google Scholar 

  28. Liu, K., Lakhote, M., Balachandar, S.: Self-induced temperature correction for inter-phase heat transfer in Euler–Lagrange point-particle simulation. J. Comput. Phys. 396, 596–615 (2019)

    Article  MathSciNet  Google Scholar 

  29. Zwick, D., Balachandar, S.: A scalable Euler–Lagrange approach for multiphase flow simulation on spectral elements. Int. J. High Perform. Comput. Appl. 34, 316–339 (2019)

    Article  Google Scholar 

  30. Bagchi, P., Balachandar, S.: Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J. Fluid Mech. 473, 379–388 (2002)

    Article  MathSciNet  Google Scholar 

  31. Bagchi, P., Balachandar, S.: Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids 14(8), 2719–2737 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378, by the Office of Naval Research (ONR) as part of the Multidisciplinary University Research Initiatives (MURI) Program under Grant Number N00014-16-1-2617, and by the National Science Foundation Graduate Research Fellowship Program under Grant Nos. DGE-1315138 and DGE-1842473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balachandar.

Additional information

Communicated by Maziar S. Hemati.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balachandar, S., Moore, W.C., Akiki, G. et al. Toward particle-resolved accuracy in Euler–Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation. Theor. Comput. Fluid Dyn. 34, 401–428 (2020). https://doi.org/10.1007/s00162-020-00538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00538-8

Keywords

Navigation