Skip to main content
Log in

Numerical simulation of dielectric bubbles coalescence under the effects of uniform magnetic field

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this research, the co-axial coalescence of a pair of gas bubbles rising in a viscous liquid column under the effects of an external uniform magnetic field is simulated numerically. Considered fluids are dielectric, and applied magnetic field is uniform. Effects of different strengths of magnetic field on the interaction of in-line rising bubbles and coalescence between them were investigated. For numerical modeling of the problem, a computer code was developed to solve the governing equations which are continuity, Navier–Stokes equation, magnetic field equation and level set and reinitialization of level set equations. The finite volume method is used for the discretization of the continuity and momentum equations using SIMPLE scheme where the finite difference method is used to discretization of the magnetic field equations. Also a level set method is used to capture the interface of two phases. The results are compared with available numerical and experimental results in the case of no-magnetic field effect which show a good agreement. It is found that uniform magnetic field accelerates the coalescence of the bubbles in dielectric fluids and enhances the rise velocity of the coalesced bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

B, b :

Magnetic field in flow field-magnetic flux density (T)

D :

Rate of strain tensor (1/s)

Eo :

Eotvos number

F :

Surface tension force (N/m3)

g :

Gravity acceleration (m/s2)

H :

External magnetic field (A/m)

J c :

Electric current (A)

M :

Morton number

m f :

Magnetic field force (N/m2)

n :

Unit normal vector

p :

Pressure (Pa)

Re :

Reynolds number

T :

Magnetic field source term (N/m3)

t :

Time (s)

V :

Velocity vector (m/s)

x, y :

Coordinate components (m)

α :

Numerical constant

\({\varDelta x}\) :

Grid step (m)

\({\varGamma}\) :

Interface

\({\varepsilon}\) :

Thickness of the interface (m)

\({\eta}\) :

Magnetic permeability (T m/A)

\({\kappa}\) :

Curvature of the interface (1/m)

\({\mu}\) :

Dynamic viscosity (Pa s)

\({\xi}\) :

Component of potential vector

\({\rho}\) :

Density (kg/m3)

\({\sigma}\) :

Surface tension coefficient (N/m)

\({\tau}\) :

Pseudo-time (s)

\({\phi}\) :

Level set function (m)

g :

Gas phase

l :

Liquid phase

References

  1. Chen R.H., Tian W.X., Su G.H., Qiu S.Z., Ishiwatari Y., Oka Y.: Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid. Chem. Eng. Sci. 66, 5055–5063 (2011)

    Article  Google Scholar 

  2. Ribeiro Jr. C.P., Mewes D.: On the effect of liquid temperature upon bubble coalescence. Chem. Eng. Sci. 61, 5704–5716 (2006)

    Article  Google Scholar 

  3. Liu J., Zhu Ch., Fu T., Ma Y., Li H.: Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids. Chem. Eng. Sci. 93, 55–66 (2013)

    Article  Google Scholar 

  4. Yu Z., Yang H., Fan L.S.: Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method. Chem. Eng. Sci. 66, 3441–3451 (2011)

    Article  Google Scholar 

  5. Kirkpatrick R.D., Lockett M.J.: The influence of approach velocity on bubble coalescence. Chem. Eng. Sci. 29, 2363–2373 (1974)

    Article  Google Scholar 

  6. Chesters A.K., Hofman G.: Bubble coalescence in pure liquids. Appl. Sci. Res. 38, 353–361 (1982)

    Article  MATH  Google Scholar 

  7. Kok J.B.W.: Dynamics of a pair of gas bubbles moving through liquid. Part II. Exp. Eur. J. Mech. B/Fluids 12, 541–560 (1993)

    Google Scholar 

  8. Van Wijngaarden L.: The mean rise velocity of pairwise-interacting bubbles in liquid. J. Fluid Mech. 251, 55–78 (1993)

    Article  MATH  Google Scholar 

  9. Das R.K., Pattanayak S.: Bubble to slug flow transition in vertical upward two-phase flow through narrow tubes. Chem. Eng. Sci. 49, 2163–2172 (1994)

    Article  Google Scholar 

  10. Yuan H.: the in-line motion of two spherical bubbles in a viscous fluid. J. Fluid Mech. 278, 325–349 (1994)

    Article  MATH  Google Scholar 

  11. Katz J., Meneveau C.: Wake-induced relative motion of bubbles rising in line. Int. J. Multiph. Flow 22, 239–258 (1996)

    Article  MATH  Google Scholar 

  12. Chen L., Garimella S.V., Reizes J.A., Leonardi E.: Motion of interacting gas bubbles in a viscous liquid including wall effects and evaporation. Numer. Heat Transf. A 31, 629–654 (1997)

    Article  Google Scholar 

  13. Pohorecki R., Moniuk M., Bielski P., Zdrojkowski A.: Modelling of the coalescence/redispersion processes in bubble columns. Chem. Eng. Sci. 56, 6157–6164 (2001)

    Article  Google Scholar 

  14. Legendre D., Magnaudet J., Mougin G.: Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid. J. Fluid Mech. 497, 133–166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sanada T., Watanabe M., Fukano T.: Effects of viscosity on coalescence of a bubble upon impact with a free surface. Chem. Eng. Sci. 60, 5372–5384 (2005)

    Article  Google Scholar 

  16. Annaland M.V.S., Deen N.G., Kuipers J.A.M.: Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluidmethod. Chem. Eng. Sci. 60, 2999–3011 (2005)

    Article  Google Scholar 

  17. Sanada T., Sato A., Shirota M., Watanabe M.: Motion and coalescence of a pair of bubbles rising side by side. Chem. Eng. Sci. 64, 2659–2671 (2009)

    Article  Google Scholar 

  18. Gupta A., Kumar R.: Lattice Boltzmann simulation to study multiple bubble dynamics. Int. J. Heat Mass Transf. 51, 5192–5203 (2008)

    Article  MATH  Google Scholar 

  19. Deen N.G., Kuipers J.A.M.: Direct numerical simulation of wall-to liquid heat transfer in dispersed gas–liquid two-phase flow using a volume of fluid approach. Chem. Eng. Sci. 102, 268–282 (2013)

    Article  Google Scholar 

  20. Ma D., Liu M., Zu Y., Tang C.: Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns. Chem. Eng. Sci. 72, 61–77 (2012)

    Article  Google Scholar 

  21. Rungsiyaphornrat S., Klaseboer E., Khoo B.C., Yeo K.S.: The merging of two gaseous bubbles with an application to underwater explosions. Computers & Fluids 32, 1049–1074 (2003)

    Article  MATH  Google Scholar 

  22. Figueroa-Espinoza B., Zenit R.: Clustering in high Re monodispersed bubbly flows. Phys. Fluids 17, 091701 (2005)

    Article  MATH  Google Scholar 

  23. Prince M.J., Blanch H.W.: Bubble coalescence and break-up in air-sparged bubble columns. AIChE J. 36-10, 1485–1499 (1990)

    Article  Google Scholar 

  24. Ki H.: Level set method for two-phase incompressible flows under magnetic fields. Comput. Phys. Commun. 181, 999–1007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ansari M.R., Hadid A., Nimvari M.E.: Effect of a uniform magnetic field on dielectric two-phase bubbly flows using the level set method. J. Mag. Mag. Mater. 324, 4094–4101 (2012)

    Article  Google Scholar 

  26. Sussman M., Fatemi E., Smereka P., Osher S.: An improved level set method for incompressible tow-phase flows. Comput. Fluids 27, 663–680 (1998)

    Article  MATH  Google Scholar 

  27. Marchandise E., Geuzaine Ph., Chevaugeon N., Remacle J.: A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J. Comput. Phys. 225, 949–974 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ansari M.R., Nimvari M.E.: Bubble viscosity effect on internal circulation within the bubble rising due to buoyancy using the level set method. Ann. Nucl. Energy 38, 2770–2778 (2011)

    Article  Google Scholar 

  29. Osher S., Sethian J.A.: Front propagating with curvature-dependent speed: algorithm based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nagrath S., Jansen K.E., Lahey Jr. R.T.: Computation of incompressible bubble dynamics with a stabilized finite element level set method. Comput. Methods Appl. Mech. Eng. 194, 4565–4587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sussman M., Smereka P., Osher S.J.: A level set approach for computing solutions to incompressible two-phase flows. J. Comput. Phys. 114, 146 (1994)

    Article  MATH  Google Scholar 

  32. Unverdi S.O., Tryggvason G.: A front tracking method for viscous, incompressible, multifluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  33. Ohta, M., Imura, T., Yoshid, Y., Sussman, M.: A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids. Int. J. Multiph. Flow 31, 223–23 (2005)

  34. Sussman M., Almgren A.S., Bell J.B., Colella P., Howell L.H., Welcome M.L.: An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 149, 81–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lakehal D., Meier M., Fulgosi M.: Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows. Int. J. Heat Fluid Flow 23, 242–257 (2002)

    Article  Google Scholar 

  36. Deshpande K.B., Zimmerman W.B.: Simulation of interfacial mass transfer by droplet dynamics using the level set method. Chem. Eng. Sci. 61, 6486–6498 (2006)

    Article  Google Scholar 

  37. Melia F.: Electrodynamics. Chicago Lectures in Physics. The University of Chicago Press, Chicago (2001)

    Google Scholar 

  38. Brackbill J.U., Kothe C., Zemach D.B.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Golub G.H., Greenbaum A., Stuart A.M., Suli E.: Mathematical Methods for the Magneto Hydrodynamics of Liquid Metals. 1st edn. Oxford University Press, Oxford (2006)

    Google Scholar 

  40. Huang H.L., Ying A., Abdou M.A.: 3D MHD free surface fluid flow simulation based on magnetic-field induction equations. Fusion Eng. Des. 63(64), 361–368 (2002)

    Article  Google Scholar 

  41. Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfacesm. Springer, New York (2003)

    Book  MATH  Google Scholar 

  42. Brereton G., Korotney D.: Coaxial and oblique coalescence of two rising bubbles. In: Sahin, I., Tryggvason, G. (eds.) Dynamics of Bubbles and Vortices Near a Free Surface, AMD-vol. 119, ASME, New York (1991)

    Google Scholar 

  43. Losasso F., Fedkiw R., Osher S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Jalali-Vahid.

Additional information

Communicated by S. Balachandar.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (AVI 723 kb)

ESM 2 (AVI 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadidi, A., Jalali-Vahid, D. Numerical simulation of dielectric bubbles coalescence under the effects of uniform magnetic field. Theor. Comput. Fluid Dyn. 30, 165–184 (2016). https://doi.org/10.1007/s00162-015-0371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0371-8

Keywords

Navigation