Skip to main content
Log in

Buoyancy-driven motion of a two-dimensional bubble or drop through a viscous liquid in the presence of a vertical electric field

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effect of an electric field on the buoyancy-driven motion of a two-dimensional gas bubble rising through a quiescent liquid is studied computationally. The dynamics of the bubble is simulated numerically by tracking the gas–liquid interface when an electrostatic field is generated in the vertical gap of the rectangular enclosure. The two phases of the system are assumed to be perfect dielectrics with constant but different permittivities, and in the absence of impressed charges, there is no free charge in the fluid bulk regions or at the interface. Electric stresses are supported at the bubble interface but absent in the bulk and one of the objectives of our computations is to quantify the effect of these Maxwell stresses on the overall bubble dynamics. The numerical algorithm to solve the free-boundary problem relies on the level-set technique coupled with a finite-volume discretization of the Navier–Stokes equations. The sharp interface is numerically approximated by a finite-thickness transition zone over which the material properties vary smoothly, and surface tension and electric field effects are accounted for by employing a continuous surface force approach. A multi-grid solver is applied to the Poisson equation describing the pressure field and the Laplace equation governing the electric field potential. Computational results are presented that address the combined effects of viscosity, surface tension, and electric fields on the dynamics of the bubble motion as a function of the Reynolds number, gravitational Bond number, electric Bond number, density ratio, and viscosity ratio. It is established through extensive computations that the presence of the electric field can have an important effect on the dynamics. We present results that show a substantial increase in the bubble’s rise velocity in the electrified system as compared with the corresponding non-electrified one. In addition, for the electrified system, the bubble shape deformations and oscillations are smaller, and there is a reduction in the propensity of the bubble to break up through increasingly larger oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson D., Sethian J.: The fast level-set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Astarita G., Apuzzo G.: Motion of gas bubbles in non-Newtonian liquids. AIChE J. 11(5), 815–820 (1965)

    Article  Google Scholar 

  3. Baker, G.R., Meiron, D.I., Orszag, S.A.: Boundary integral methods for axisymmetric and three-dimensional Rayleigh- Taylor instability problems. Physica D 12, 19 (1984)

    Google Scholar 

  4. Bhaga D., Weber M.E.: Bubbles in viscous liquid: shapes, wakes and velocities. J. Fluid Mech. 105, 61–85 (1981)

    Article  Google Scholar 

  5. Bozzi L.A., Feng J.Q., Scott T.C., Pearlstein A.J.: Steady axisymmetric motion of deformable drops falling or rising through a homoviscous fluid in a tube at intermediate Reynolds number. J. Fluid Mech. 336, 1–32 (1997)

    Article  MATH  Google Scholar 

  6. Brackbill J.U., Kothe D.B., Zemach C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bunner B., Tryggvason G.: Dynamics of homogeneous bubbly flows Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech. 466, 17–52 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Chen L., Garimella S.V., Reizes J.A., Leonardi E.: The development of a bubble rising in a viscous liquid. J. Fluid Mech. 387, 61–96 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chorin A.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  10. Clift R., Grace J.R., Weber M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)

    Google Scholar 

  11. Davies R.M., Taylor G.I.: The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. A 200, 375–390 (1950)

    Article  Google Scholar 

  12. Glimm J., McBryan O., Menikoff R., Sharp D.H.: Front tracking applied to Rayleigh–Taylor instability. SIAM J. Sci. Stat. Comput. 7, 230–251 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Harlow F.H., Welch J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  Google Scholar 

  14. Harper J.F.: The motion of bubbles and drops through liquids. Adv. Appl. Mech. 12, 59–129 (1972)

    Article  Google Scholar 

  15. Hartunian R.A., Sears W.R.: On the instability of small gas bubbles moving uniformly in various liquids. J. Fluid Mech. 3, 27–47 (1957)

    Article  MATH  Google Scholar 

  16. Hirt C.W., Nichols B.D.: Volume of fluid (VoF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  17. Hua J., Lou J.: Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222, 769–795 (2007)

    Article  MATH  Google Scholar 

  18. Jones T.B.: Electrohydrodynamically enhanced heat transfer in liquids - A review. Adv. Heat Transf. 14, 107 (1978)

    Google Scholar 

  19. Kang S.I., Leal G.L.: Numerical solution of axisymmetric, unsteady free-boundary problem at finite Reynolds number. I. Finite-difference scheme and its application to the deformation of a bubble in a uniaxial straining flow. Phys. Fluids 30, 1929–1940 (1987)

    Article  MATH  Google Scholar 

  20. Landau, L.D., Lifshitz, E.M:. Electrodynamics of Continuous Media, p. 417. Pergamon, Oxford (1960)

  21. Levich V.G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  22. Longuet-Higgins M.S., Cokelet E.D.: The deformation of steep surface waves on water, I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 1–26 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lundgren T.S., Mansour N.N.: Vortex ring bubbles. J. Fluid Mech. 224, 177–196 (1991)

    Article  MATH  Google Scholar 

  24. Maxworthy T., Gnann C., Kürten M., Durst F.: Experiments on the rise of air bubbles in clean viscous liquids. J. Fluid Mech. 321, 421–441 (1996)

    Article  Google Scholar 

  25. Miksis M.J., Vanden-Broeck J.M., Keller J.B.: Axisymmetric bubble or drop in a uniform flow. J. Fluid Mech. 108, 89–100 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  26. Moore D.W.: The rise of a gas bubble in viscous liquid. J. Fluid Mech. 6, 113–130 (1959)

    Article  MATH  Google Scholar 

  27. Moore D.W.: The boundary layer on a spherical bubble. J. Fluid Mech. 16, 161–176 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moore D.W.: The velocity of rise of distorted gas bubbles in a liquid of small viscosities. J. Fluid Mech. 23, 323–344 (1965)

    Article  Google Scholar 

  29. Norman C.E., Miksis M.J.: Dynamics of a gas bubble in an inclined channel at finite Reynolds number. Phys. Fluids 17, 022103 (2004)

    Google Scholar 

  30. Osher S., Sethian J.A.: Fronts propagating with curvature-dependent speed: algorithm based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Osher S., Shu C.-W.: High order essentially non-oscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ryskin G., Leal L.G.: Numerical solution of free boundary problems in fluid mechanics. Part 1. The finite-difference technique. J. Fluid Mech. 148, 1–17 (1984)

    Article  MATH  Google Scholar 

  33. Ryskin G., Leal L.G.: Numerical solution of free boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech. 148, 19–35 (1984)

    Article  MATH  Google Scholar 

  34. Sethian J.: Fast marching level-set method for monotonically advancing fronts. Proc. Acad. Natl Sci. 93, 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sethian J.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  36. Seyed-Yagoobi J., Bryan J.E.: Enhancement of heat transfer and mass transport in single-phase and two-phase flows with electrohydrodynamics. Adv. Heat Transf. 33, 95–186 (1999)

    Google Scholar 

  37. Sussman M.: An efficient interface-preserving level-set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20, 1165–1191 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sussman M., Pucket E.: A coupled level-set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sussman M., Smereka P.: Axisymmetric free boundary problems. J. Fluid Mech. 341, 269–294 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Taylor T.D., Acrivos A.: On the deformation and drag of a falling drop at low Reynolds number. J. Fluid Mech. 18, 466–476 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  41. Taylor G.I., McEwan A.D.: The stability of a horizontal fluid interface in a vertical electric field. J. Fluid Mech. 22, 1–15 (1965)

    Article  MATH  Google Scholar 

  42. Tomar G., Gerlach D., Biwas G., Alleborn N., Sharma A., Durst F., Welch S.W.J., Delgado A.: Two-phase electrohydrodynamic simulations using a volume of fluid approach. J. Comput. Phys. 227, 1267–1285 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Unverdi S.O., Tryggvason G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  44. Walters J.K., Davidson J.F.: The initial motion of a gas bubble formed in an inviscid liquid. Part 1. The two-dimensional bubble. J. Fluid Mech. 12, 408–417 (1962)

    Article  Google Scholar 

  45. Walters J.K., Davidson J.F.: The initial motion of a gas bubble formed in an inviscid liquid. Part 2. J. Fluid Mech. 17, 321–336 (1963)

    Article  Google Scholar 

  46. Ward T., Homsy G.M.: Electrohydrodynamically driven chaotic mixing in a translating drop. Phys. Fluids 13, 3521–3525 (2001)

    Article  MathSciNet  Google Scholar 

  47. Ward T., Homsy G.M.: Electrohydrodynamically driven chaotic mixing in a translating drop. II Experiments. Phys. Fluids 15, 2987–2994 (2003)

    Article  Google Scholar 

  48. Wegener P.P., Parlange J.Y.: Spherical-cap bubbles. Annu. Rev. Fluid Mech. 5, 79–100 (1973)

    Article  Google Scholar 

  49. Youngren G.K., Acrivos A.: On the shape of a gas bubble in a viscous extensional flow. J. Fluid Mech. 76, 433–442 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mählmann.

Additional information

Communicated by O. Zikanov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mählmann, S., Papageorgiou, D.T. Buoyancy-driven motion of a two-dimensional bubble or drop through a viscous liquid in the presence of a vertical electric field. Theor. Comput. Fluid Dyn. 23, 375–399 (2009). https://doi.org/10.1007/s00162-009-0158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0158-x

Keywords

PACS

Navigation