Skip to main content
Log in

Coaxial axisymmetric vortex rings: 150 years after Helmholtz

  • Special Issue Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This article addresses the fascinating 150 years history of the classical Helmholtz paper that laid the foundation of the vortex dynamics. Among general theorems on vortex motion, this memoir contains the special section on circular vortex filaments and axisymmetric vortex rings, in particular. The objective of this article is both to clarify some purely mathematical questions connected with the Dyson model of coaxial vortex rings in inviscid incompressible fluid and to provide a historical overview of achievements in experimental, analytical, and numerical studies of vortex rings interactions. The model is illustrated by several examples both of regular and chaotic motion of several vortex rings in an unbounded fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheson D.J.: Elementary Fluid Dynamics. Clarendon, Oxford (1990)

    MATH  Google Scholar 

  2. Ackeret J.: Über die Bildung von Wirbeln in reibungslosen Flüssigkeit. Z. Angew. Math. Mech. 15, 3–4 (1935)

    MATH  Google Scholar 

  3. Acton E.: A modelling of large eddies in an axisymmetric jet. J. Fluid Mech. 98, 1–31 (1980)

    MATH  Google Scholar 

  4. Albring W.: Elementarvorgänge fluider Wirbelbewegungen. Akademie, Berlin (1981)

    Google Scholar 

  5. Alekseenko S.V., Kuibin P.A., Okulov V.L.: Theory of Concentrated Vortices: An Introduction. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Alkemade, A.J.Q.: Vortex atoms and vortons. Ph.D. thesis. Technische Universiteit Delft, Delft (1994)

  7. Appell P.: Traité de mécanique rationnelle. Tome III. Équilibre et mouvement des milieux continus. Gauthier-Villars, Paris (1903)

    Google Scholar 

  8. Auerbach D.: Some open questions on the flow of circular vortex rings. Fluid Dyn. Res. 3, 209–213 (1988)

    Google Scholar 

  9. Auerbach F.: Wirbelbewegung. In: Winkelmann, A. (eds) Handbuch der Physik, Band 1, SS, pp. 1047–1074. Barth, Leipzig (1908)

    Google Scholar 

  10. Auerbach F.: Wirbelbewegung. In: Auerbach, F., Hort, W. (eds) Handbuch der Physikalischen und Technischen Mechanik, Band 5, SS, pp. 115–156. Barth, Leipzig (1927)

    Google Scholar 

  11. Bagrets A.A., Bagrets D.A.: Nonintegrability of two problems in vortex dynamics. Chaos 7, 368–375 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Ball R.S.: Account of experiments upon the retardation experienced by vortex rings of air when moving through air. Trans. R. Irish Acad. 25, 135–155 (1872)

    Google Scholar 

  13. Basset A.B.: A Treatise on Hydrodynamics. Deighton Bell, Cambridge (1888)

    MATH  Google Scholar 

  14. Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  15. Bauer G.: Die Helmholtzsche Wirbeltheorie für Ingenieure Bearbeitet. Oldenbourg, München-Berlin (1919)

    MATH  Google Scholar 

  16. Betz A.: Wirbelbildung in idealen Flüssigkeiten und Helmholtzscher Wirbelsatz. Z. Angew. Math. Mech. 10, 413–415 (1930)

    MATH  Google Scholar 

  17. Betz A.: Wie entsteht ein Wirbel in einer wenig zähen Flüssigkeit?. Naturwissenschaften 37, 193–195 (1950)

    Google Scholar 

  18. Blackmore D., Brøns M., Goullet A.: A coaxial vortex ring model for vortex breakdown. Physica D 237, 2817–2844 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Blackmore D., Champanerkar J., Wang C.W.: A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discret. Contin. Dyn. Syst. B 5, 15–33 (2005)

    MATH  MathSciNet  Google Scholar 

  20. Blackmore D., Knio O.: KAM theory analysis of the dynamics of three coaxial vortex rings. Physica D 140, 321–348 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Blackmore D., Knio O.: Transition from quasiperiodicity to chaos for three coaxial vortex rings. Z. Angew. Math. Mech. 80(Suppl 1), S173–S176 (2000)

    MATH  Google Scholar 

  22. Boyarintzev V.I., Levchenko E.S., Savin A.S.: Motion of two vortex rings. Fluid Dyn. 20, 818–819 (1985)

    Google Scholar 

  23. Brillouin, M.: Recherches récentes sur diverses questions d’hydrodynamique. Exposé des travaux de von Helmholtz, Kirchhoff, Sir W. Thomson, Lord Rayleigh. Gauthier-Villars, Paris (1891)

  24. Brutyan M.A., Krapivskii P.L.: The motion of a system of vortex rings in an incompressible fluid. J. Appl. Math. Mech. 48, 365–368 (1984)

    MathSciNet  Google Scholar 

  25. Cahan D. (eds): Hermann von Helmholtz and Foundations of Nineteenth-Century Science. University of California Press, Berkeley (1993)

    MATH  Google Scholar 

  26. Cahan D.: Helmholtz and the shaping of the American physics elite in the Gilded Age. Hist. Stud. Phys. Biol. Sci. 35, 1–34 (2004)

    Google Scholar 

  27. Cahan D.: The “Imperial Chancellor of the Sciences”: Helmholtz between science and politics. Soc. Res. 73, 1093–1128 (2006)

    Google Scholar 

  28. Chorin A.J., Marsden J.E.: Mathematical Introduction to Fluid Mechanics. 3rd edn. Springer, New York (1992)

    Google Scholar 

  29. Chu C.-C., Wang C.-T., Chang C.-C., Chang R.-Y., Chang W.-T.: Head-on collision of two coaxial vortex rings: experiment and computation. J. Fluid Mech. 296, 39–71 (1995)

    Google Scholar 

  30. Cromby A.C.: Helmholtz. Sci. Amer. 198, 94–102 (1958)

    Google Scholar 

  31. Dabiri J.O., Gharib M.: Fluid entrainment by isolated vortex rings. J. Fluid Mech. 511, 311–331 (2004)

    MATH  Google Scholar 

  32. Darrigol O.: From organ pipes to atmospheric motion: Helmholtz on fluid mechanics. Hist. Stud. Phys. Sci. 29, 1–51 (1998)

    Google Scholar 

  33. Darrigol O.: Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  34. Dickinson M.: How to walk on water. Nature 424, 621–622 (2003)

    Google Scholar 

  35. Didden N.: On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. 30, 101–116 (1979)

    Google Scholar 

  36. Dolbear A.E.: Modes of Motion or Mechanical Conceptions of Physical Phenomena. Lee and Shepard, Boston (1897)

    Google Scholar 

  37. Donnelly R.J.: Quantized Vortices in Helium II. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  38. Drucker E.G., Lauder G.V.: Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J. Exp. Biol. 202, 2393–2412 (1999)

    Google Scholar 

  39. van Dyke M.: An Album of Fluid Motion. Parabolic, Stanford (1982)

    Google Scholar 

  40. Dyson F.W.: The potential of an anchor ring. Part II. Phil. Trans. R. Soc. Lond. A 184, 1041–1106 (1893)

    Google Scholar 

  41. Ebert H.: Hermann von Helmholtz. Wissenschafliche Verlagsgesellschaft, Stuttgart (1949)

    Google Scholar 

  42. Eddington A.S.: Sir Frank Watson Dyson 1868–1939. Obit. Notices Fellows R. Soc. 3, 159–172 (1940)

    Google Scholar 

  43. Edser E.: General Physics for Students: A Textbook on the Fundamental Properties of Matter. Macmillan, London (1911)

    Google Scholar 

  44. Einstein A.: Zum hundertjährigen Gedenktag von Lord Kelvin’s Geburt. (26. Juni 1824). Naturwissenschaften 12, 601–602 (1924)

    Google Scholar 

  45. Ellington C.P.: The aerodynamics of hovering insect flight. V. A vortex theory. Phil. Trans. R. Soc. Lond. B 305, 115–144 (1984)

    Google Scholar 

  46. Epple M.: Topology, matter, and space, I: Topological notions in 19th-century natural philosophy. Arch. Hist. Exact Sci. 52, 297–392 (1998)

    MATH  MathSciNet  Google Scholar 

  47. Faber T.E.: Fluid Dynamics for Physicists. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  48. Filippov A.T.: The Versatile Soliton. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  49. FitzGerald G.F.: Helmholtz memorial lecture. Nature 53, 296–298 (1896)

    Google Scholar 

  50. Fleming J.A.: Waves and Ripples in Water, Air, and Aither. Young, London (1902)

    Google Scholar 

  51. Fraenkel L.E.: On steady vortex rings of small cross-section in an ideal fluid. Proc. R. Soc. Lond. A 316, 29–62 (1970)

    MATH  Google Scholar 

  52. Fraenkel L.E.: Examples of steady vortex rings of small cross-section in an ideal fluid. J. Fluid Mech. 51, 119–135 (1972)

    MATH  Google Scholar 

  53. Fukumoto Y.: Higher-order asymptotic theory for the velocity field induced by an inviscid vortex ring. Fluid Dyn. Res. 30, 65–92 (2002)

    MATH  MathSciNet  Google Scholar 

  54. Fukumoto Y., Moffatt H.K.: Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity. J. Fluid Mech. 417, 1–45 (2000)

    MATH  MathSciNet  Google Scholar 

  55. Glazebrook R.T.: Sir Horace Lamb 1849–1934. Obit. Notices Fellows R. Soc. 1, 375–392 (1935)

    Google Scholar 

  56. Goman O.G., Karplyuk V.I., Nisht M.I.: Problem of the motion of annular vortices in an ideal fluid. Fluid Dyn. 22, 385–392 (1987)

    MATH  Google Scholar 

  57. Gray A.: Lord Kelvin: An Account of his Scientific Life and Work. Dent, London (1908)

    MATH  Google Scholar 

  58. Gray A.: Notes on hydrodynamics. Phil. Mag. (Ser. 6) 28, 1–18 (1914)

    Google Scholar 

  59. Grinchenko V.T., Meleshko V.V., Gourjii A.A., Eisenga A.E.M., van Heijst G.J.F.: Two approaches to the analysis of the coaxial interaction of vortex rings. Int. J. Fluid Mech. Res. 30, 166–183 (2003)

    MathSciNet  Google Scholar 

  60. Gröbli, W.: Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden. Vierteljschr. Nat. Ges. Zürich 22, 37–82, 129–168 (1877)

    Google Scholar 

  61. Gurzhii A.A., Konstantinov M.Yu.: Head-on collision of two coaxial vortex rings in an ideal fluid. Fluid Dyn. 24, 538–541 (1989)

    Google Scholar 

  62. Gurzhii, A.A., Konstantinov, M.Yu.: The influence of relative sizes of coaxial vortex rings cores on the characteristics of their interaction (in Ukrainian). Dopovidi Akad. Nauk UkrSSR. Ser. A, No 3, 38–41 (1989)

    Google Scholar 

  63. Gurzhii, A.A., Konstantinov, M.Yu., Meleshko, V.V.: Interaction of thin coaxial vortex rings in an ideal fluid. (in Ukrainian). Dopovidi Akad. Nauk UkrSSR. Ser. A, No 4, 40–44 (1987)

  64. Gurzhii A.A., Konstantinov M.Yu., Meleshko V.V.: Interaction of coaxial vortex rings in an ideal fluid. Fluid Dyn. 23, 224–229 (1988)

    MathSciNet  Google Scholar 

  65. Gurzhii A.A., Meleshko V.V.: Sound emission by a system of vortex rings. Acoust. Phys. 42, 43–50 (1996)

    Google Scholar 

  66. Helmholtz H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25–55 (1858)

    MATH  Google Scholar 

  67. Helmholtz H.: On integrals of the hydrodynamical equations, which express vortex-motion. Phil. Mag. (Ser. 4) 33, 485–510 (1867)

    Google Scholar 

  68. Helmholtz H.: Ueber discontinuirliche Flüssigkeitsbewegungen. Monatsber. Akad. Wiss. Berlin 23, 215–228 (1868)

    Google Scholar 

  69. Helmholtz H.: Sui movimenti dei liquidi. Nuovo Cimento (Ser. 2) 1, 289–304 (1869)

    Google Scholar 

  70. Helmholtz H.: Wissenschaftlische Abhandlungen. Band I. Barth, Leipzig (1882)

    Google Scholar 

  71. von Helmholtz, H.: Autobiographisches Tischrede bei der Feier des 70. Geburtstages. In: Ansprachen und Reden, gehalten bei der am 2. November 1891 zu Ehren von Hermann von Helmholtz veranstalteten Feier, SS. 46–59. Hirschwald, Berlin (1892). (Reprinted in 1966)

  72. von Helmholtz, H.: Zwei hydrodynamische Abhandlungen. I. Ueber Wirbelbewegungen (1858). II. Ueber discontinuirliche Flüssigkeitsbewegungen (1868). In: Wangerin, A. (ed.) Ostwalds Klassiker der exakten Wissenschaften, No 79. Engelmann, Leipzig (1896). (Reprinted in 1953, 1996)

  73. Helmholtz H.: Two Studies in Hydrodynamics. (in Russian). Palas, Moscow (1902)

    Google Scholar 

  74. von Helmholtz H.: An autobiographical sketch. An address delivered on the occasion of his Jubilee in Berlin, 1891. In: Kahl, R. (eds) Selected Writings of Hermann von Helmholtz, pp. 466–478. Wesleyan University Press, Middletown (1971)

    Google Scholar 

  75. von Helmholtz H.: On integrals of the hydrodynamical equations, which express vortex motion. Int. J. Fusion Energy 1, 41–68 (1978)

    Google Scholar 

  76. Helmholtz H.: On integrals of the hydrodynamical equations, which express vortex motion. (in Russian). Nonlinear Dyn. 2, 473–507 (2006)

    Google Scholar 

  77. Hernández R.H., Cibert B., Béchet C.: Experiments with vortex rings in air. Europhys. Lett. 75, 743–749 (2006)

    Google Scholar 

  78. Hicks W.M.: Report on recent progress in hydrodynamics, II. Rep. Brit. Assos. Adv. Sci. 52, 39–70 (1882)

    Google Scholar 

  79. Hicks W.M.: Researches on the theory of vortex rings. Part II. Phil. Trans. R. Soc. Lond. A 176, 725–780 (1885)

    Google Scholar 

  80. Hicks W.M.: The mass carried forward by a vortex. Phil. Mag. (ser. 6) 38, 597–612 (1919)

    Google Scholar 

  81. Hicks W.M.: On the mutual threading of vortex rings. Proc. R. Soc. Lond. A 102, 111–131 (1922)

    Google Scholar 

  82. Hill M.J.M.: On a spherical vortex. Phil. Trans. R. Soc. Lond. A 185, 213–245 (1894)

    Google Scholar 

  83. Hu D.L., Chau B., Bush J.W.M.: The hydrodynamics of water strider locomotion. Nature 424, 663–666 (2003)

    Google Scholar 

  84. Joukovskii N.E.: [Helmholtz’s] works on mechanics. (in Russian). In: Stoletov, A.G. (eds) Hermann von Helmholtz 1821–1891. Public lectures delivered at the Imperior Moscow University for the Helmholtz fund, pp. 37–52. Moscow University Press, Moscow (1892)

    Google Scholar 

  85. Joukovskii N.E.: A note on the motion of vortex rings. (in Russian). Mat. Sbornik 26, 483–490 (1907)

    Google Scholar 

  86. Joukowski N.: Bases théoriques de l’aéronautique. Aérodynamique: Cours professé a l’École Impériale Technique de Moscou. Gauthier-Villars, Paris (1916)

    Google Scholar 

  87. Jungnickel C., McCormmach R.: Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein, vol 1. The Torch of Mathematics 1800–1870. University of Chicago Press, Chicago (1990)

    Google Scholar 

  88. Jungnickel C., McCormmach R.: Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein, vol. 2. The Now Mighty Theoretical Physics 1870–1925. University of Chicago Press, Chicago (1990)

    MATH  Google Scholar 

  89. Kambe T.: Acoustic emissions by vortex motions. J. Fluid Mech. 173, 643–666 (1986)

    MATH  Google Scholar 

  90. Kambe T.: Elementary Fluid Mechanics. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  91. Kambe T., Minota T.: Sound radiation from vortex systems. J. Sound Vibr. 74, 61–72 (1981)

    MATH  Google Scholar 

  92. Kambe T., Minota T.: Acoustic wave radiated from head-on collision of two vortex rings. Proc. R. Soc. Lond. A 386, 277–308 (1983)

    Google Scholar 

  93. Kirchhoff G.: Vorlesungen über Matematische Physik: Mechanik. Teubner, Leipzig (1876)

    Google Scholar 

  94. Klein F.: Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten. Z. Math. Phys. 58, 259–262 (1910)

    Google Scholar 

  95. Koenigsberger L.: The investigations of Hermann von Helmholtz on the fundamental principles of mathematics and mechanics. Smithsonian Inst. Annu. Rep. 51, 93–123 (1896)

    Google Scholar 

  96. Koenigsberger L.: Hermann von Helmholtz. Vieweg, Braunschweig (1902)

    MATH  Google Scholar 

  97. Koenigsberger L.: Hermann von Helmholtz. (With a preface by Lord Kelvin). Clarendon, Oxford (1906)

    MATH  Google Scholar 

  98. Konstantinov M.Yu.: Chaotic phenomena in the interaction of vortex rings. Phys. Fluids 6, 1752–1767 (1994)

    MATH  MathSciNet  Google Scholar 

  99. Konstantinov M.Yu.: Numerical investigation of the interaction of coaxial vortex rings. Int. J. Num. Meth. Heat Fluid Flow 7, 120–140 (1997)

    MATH  MathSciNet  Google Scholar 

  100. Konstantinov M.Yu., Meleshko V.V.: Motion of vortex ring generated in an ideal fluid near solid walls. Fluid Mech. Soviet Res. 20(3), 1–6 (1991)

    MATH  Google Scholar 

  101. Kragh H.: The vortex atom: A Victorian theory of everything. Centaurus 44, 32–114 (2002)

    MathSciNet  Google Scholar 

  102. Krueger P.S., Moslemi A.A., Nichols J.T., Bartol I.K., Stewart W.J.: Vortex rings in bio-inspired and biological jet propulsion. Adv. Sci. Tech. 58, 237–246 (2008)

    Google Scholar 

  103. Lamb H.: A Treatise on the Mathematical Theory of the Motion of Fluids. Cambridge University Press, Cambridge (1879)

    Google Scholar 

  104. Lamb H.: The motion of fluids. Nature 22, 145 (1880)

    Google Scholar 

  105. Lamb H.: Hydrodynamics. 2nd edn. Cambridge University Press, Cambridge (1895)

    MATH  Google Scholar 

  106. Lamb H.: Hydrodynamics. 3nd edn. Cambridge University Press, Cambridge (1906)

    MATH  Google Scholar 

  107. Lamb H.: Hydrodynamics. 4nd edn. Cambridge University Press, Cambridge (1916)

    Google Scholar 

  108. Lamb H.: Hydrodynamics. 5nd edn. Cambridge University Press, Cambridge (1924)

    MATH  Google Scholar 

  109. Lamb H.: Hydrodynamics. 6nd edn. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  110. von Laue M.: Zum 50. Todestage von Hermann v. Helmholtz (8. September 1944.). Naturwissenschaften 32, 206–207 (1944)

    Google Scholar 

  111. Lebedinskii A.V., Frankfurt U.I., Frenk A.M.: Helmholtz. (in Russian). Nauka, Moscow (1966)

    Google Scholar 

  112. Levy E.: The Science of Water: The Foundation of Modern Hydraulics. American Society of Civil Engineers, New York (1995)

    Google Scholar 

  113. Levy H., Forsdyke A.G.: The stability of an infinite system of circular vortices. Proc. R. Soc. Lond. A 114, 594–604 (1927)

    Google Scholar 

  114. Levy H., Forsdyke A.G.: The vibrations of an infinite system of vortex rings. Proc. R. Soc. Lond. A 116, 352–379 (1927)

    Google Scholar 

  115. Lewis T.C.: On the images of vortices in a spherical vessel. Q. J. Pure Appl. Math. 16, 338–347 (1879)

    Google Scholar 

  116. Lewis T.C.: Some cases of vortex motion. Mess. Math. 9, 93–95 (1880)

    Google Scholar 

  117. Lichtenstein, L.: Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendrückbarer, reibungsloser Flüssigkeiten und die Helmholtzschen Wirbelsätze, Math. Z. 23, 89–154, 310–316 (1925)

    Google Scholar 

  118. Lichtenstein L.: Grundlagen der Hydromechanik. Springer, Berlin (1929)

    MATH  Google Scholar 

  119. Lim T.T.: A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers. Phys. Fluids 9, 239–241 (1997)

    Google Scholar 

  120. Lim T.T., Nickels T.B.: Instability and reconnection in the head-on collision of two vortex rings. Nature 357, 225–227 (1992)

    Google Scholar 

  121. Lim T.T., Nickels T.B.: Vortex rings. In: Green, S.I. (eds) Fluid Vortices, pp. 95–153. Kluwer, Dordrecht (1995)

    Google Scholar 

  122. Lim T.T., Nickels T.B., Chong M.S.: A note on the cause of rebound in the head-on collision of a vortex ring with a wall. Exp. Fluids 12, 41–48 (1991)

    Google Scholar 

  123. Liow Y.S.K., Thompson M.C., Hourigan K.: Sound generated by a pair of axisymmetric coaxial vortex rings. AIAA J. 43, 326–336 (2005)

    Google Scholar 

  124. Lodge O.J.: The stream-lines of moving vortex-rings. Phil. Mag.(ser. 5) 20, 67–70 (1885)

    Google Scholar 

  125. Love A.E.H.: On recent English researches in vortex motion. Math. Ann. 30, 326–344 (1887)

    MathSciNet  Google Scholar 

  126. Love A.E.H.: On the motion of paired vortices with a common axis. Proc. Lond. Math. Soc. 25, 185–194 (1894)

    Google Scholar 

  127. Love A.E.H.: Hydrodynamik: Theoretische Ausführungen. In: Klein, F., Müller, C. (eds) Encyklopädie der Mathematischen Wissenschaften, Band. IV/3, SS, pp. 84–147. Teubner, Leipzig (1901)

    Google Scholar 

  128. Love A.E.H.: Développements d’hydrodynamique. In: Molk, J., Appell, P. (eds) Encyclopédie des Sciences Mathématiques, vol. IV/5, pp. 102–208. Gauthier-Villars, Paris (1913)

    Google Scholar 

  129. Lugt H.: Vortex Flow in Nature and Technology. Wiley, New York (1983)

    Google Scholar 

  130. Lugt H.: Introduction to Vortex Theory. Vortex Flow Press, Potomac (1996)

    Google Scholar 

  131. Marshall J.S.: The flow induced by periodic vortex rings wrapped around a columnar vortex core. J. Fluid Mech. 345, 1–30 (1997)

    MATH  MathSciNet  Google Scholar 

  132. Maxwell J.C.: Manuscript fragments on the stability of fluid motion [a question set for the Cambridge Mathematical Tripos in 1866]. In: Harman, P.M. (eds) The Scientific Letters and Papers of James Clerk Maxwell, vol. 2, pp. 241–244. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  133. Maxwell J.C.: Letter to Peter Guthrie Tait, 13 November 1867. In: Harman, P.M. (eds) The Scientific Letters and Papers of James Clerk Maxwell, vol. 2, pp. 321–322. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  134. Maxwell J.C.: Letter to Peter Guthrie Tait, 18 July 1868. In: Harman, P.M. (eds) The Scientific Letters and Papers of James Clerk Maxwell, vol 2, pp. 391–394. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  135. Maxwell J.C.: Letter to William Thomson, 18 July 1868. In: Harman, P.M. (eds) The Scientific Letters and Papers of James Clerk Maxwell, vol. 2, pp. 398–403. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  136. Maxwell J.C.: Letter to William Thomson, 6 October 1868. In: Harman, P.M. (eds) The Scientific Letters and Papers of James Clerk Maxwell, vol. 2, pp. 446–448. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  137. Maxwell J.C.: Hermann Ludwig Ferdinand Helmholtz. Nature 15, 389–391 (1877)

    Google Scholar 

  138. Maxwell J.C.: Atom. Encyclopædia Britannica. 9th edn. 3, 36–48 (1878)

    Google Scholar 

  139. Maxworthy T.: Some expermental studies of vortex rings. J. Fluid Mech. 81, 465–495 (1977)

    Google Scholar 

  140. Maxworthy T.: Comments on “Preliminary study of mutual slip-through of a pair of vortices”. Phys. Fluids 22, 200 (1979)

    Google Scholar 

  141. McKendrick J.G.: Hermann Ludwig Ferdinand von Helmholtz. Longmans, Green & Co, New York (1899) (Reprinted in 2007, 2008)

    Google Scholar 

  142. Meleshko V.V., Aref H.: A bibliography of vortex dynamics 1858–1956. Adv. Appl. Mech. 41, 197–292 (2007)

    Google Scholar 

  143. Meleshko V.V., Konstantinov M.Yu.: Dynamics of Vortex Structures. (in Russian). Naukova Dumka, Kiev (1993)

    Google Scholar 

  144. Meleshko V.V., Konstantinov M.Yu., Gurzhii A.A.: Ordered and chaotic movement in the dynamics of three coaxial vortex rings. J. Math. Sci. 68, 711–714 (1994)

    MathSciNet  Google Scholar 

  145. Milne-Thomson L.M.: Theoretical Aerodynamics. Macmillan, New York (1966)

    Google Scholar 

  146. Minota T., Nishida M., Lee M.G.: Head-on collision of two compressible vortex rings. Fluid Dyn. Res. 22, 43–60 (1998)

    Google Scholar 

  147. Miyazaki T., Kambe T.: Axisymmetrical problem of vortex sound with solid surfaces. Phys. Fluids 29, 4006–4015 (1986)

    MATH  Google Scholar 

  148. Moffatt K.: Vortex dynamics: The legasy of Helmholtz and Kelvin. In: Borisov, A.V., Kozlov, V.V., Mamaev, I.S., Sokolovskiy, M.A. (eds) IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence Proceedings of the IUTAM Symposium held in Moscow, 25–30 August 2006, pp. 1–10. Springer, Dordrecht (2008)

    Google Scholar 

  149. Mohseni K.: A formulation for calculating the translational velocity of a vortex ring or pair. Bioisp. Biomim. 1, S57–S64 (2006)

    Google Scholar 

  150. Norbury J.: A family of steady vortex rings. J. Fluid Mech. 57, 417–431 (1973)

    MATH  Google Scholar 

  151. Northrup, E.F. An experimental study of vortex motions in liquids. J. Franklin Inst. 172, 211–226, 345–368 (1911)

    Google Scholar 

  152. Northrup E.F.: A photographic study of vortex rings in liquids. Nature 88, 463–468 (1912)

    Google Scholar 

  153. Novikov E.A.: Hamiltonian description of axisymmetric vortex flows and the system of vortex rings. Phys. Fluids 28, 2921–2922 (1985)

    MATH  Google Scholar 

  154. Ogawa A.: Vortex Flow. CRC Press, Boca Raton (1993)

    Google Scholar 

  155. Oshima Y.: Head-on collision of two vortex rings. J. Phys. Soc. Jpn. 44, 328–331 (1978)

    Google Scholar 

  156. Oshima Y., Kambe T., Asaka S.: Interaction of two vortex rings moving along a common axis of symmetry. J. Phys. Soc. Jpn. 38, 1159–1166 (1975)

    Google Scholar 

  157. Oshima Y., Noguchi T., Oshima K.: Numerical study of interaction of two vortex rings. Fluid Dyn. Res. 1, 215–227 (1986)

    Google Scholar 

  158. Pedrizzetti G., Novikov E.A.: Instability and chaos in axisymmetric vortex-body interactions. Fluid Dyn. Res. 12, 129–151 (1993)

    Google Scholar 

  159. Pocklington H.C.: The complete system of the periods of a hollow vortex ring. Phil. Trans. R. Soc. Lond. A 186, 603–619 (1895)

    Google Scholar 

  160. Poincaré H.: Théorie des tourbillons. Carré, Paris (1893)

    Google Scholar 

  161. Prandtl L., Tietjens O.G.: Fundamentals of Hydro- and Aeromechanics. Dover, New York (1957)

    MATH  Google Scholar 

  162. Ramsay A.S.: A Treatise of Hydromechanics. Part II. Hydrodynamics. Bell, London (1913)

    Google Scholar 

  163. Rayleigh L.: Fluid motions. Proc. R. Instn. Gt. Britain 21, 70–83 (1914)

    Google Scholar 

  164. Rayner J.M.V.: A vortex theory of animal flight. Part 1. The vortex wake of a hoyering animal. J. Fluid Mech. 91, 697–730 (1979)

    MATH  Google Scholar 

  165. Rayner J.M.V.: A vortex theory of animal flight. Part 2. The forward flight of birds. J. Fluid Mech. 91, 731–763 (1979)

    MATH  Google Scholar 

  166. Reusch E.: Ueber Ringbildung in Flüssigkeiten. Ann. Phys. Chem. (Ser. 2) 110, 309–316 (1860)

    Google Scholar 

  167. Reynolds O.: On the resistance encountered by vortex rings and the relation between vortex rings and the stream-lines of a disc. Nature 14, 477–479 (1876)

    Google Scholar 

  168. Reynolds O.: On vortex motion. Proc. R. Instn. Gt. Britain 8, 272–279 (1877)

    Google Scholar 

  169. Reynolds O.: Vortex rings. [The Motion of Vortex Rings. By J.J. Thomson (London: Macmillan and Co., 1883)]. Nature 29, 193–195 (1883)

    Google Scholar 

  170. Reynolds O.: Study of fluid motion by means of coloured bands. Nature 50, 161–164 (1894)

    Google Scholar 

  171. Riley N.: On the behaviour of pairs of vortex rings. Q. J. Mech. Appl. Math. 46, 521–539 (1993)

    MATH  MathSciNet  Google Scholar 

  172. Riley N.: The fascination of vortex rings. Appl. Sci. Res. 58, 169–189 (1998)

    MATH  Google Scholar 

  173. Riley N., Stevens D.P.: A note on leapfrogging vortex rings. Fluid Dyn. Res. 11, 235–244 (1993)

    Google Scholar 

  174. Roberts P.H.: A Hamiltonian theory for weakly interacting vortices. Mathematika 19, 169–179 (1972)

    Article  MATH  Google Scholar 

  175. Roberts P.H., Donnelly R.J.: Dynamics of vortex rings. Phys. Lett. A 31, 137–138 (1970)

    Google Scholar 

  176. Rogers W.B.: On the formation of rotating rings by air and liquids under certain conditions of discharge. Am. J. Sci. (Ser. 2) 26, 246–258 (1858)

    Google Scholar 

  177. Rott N.: Vortex drift: a historical survey. In: Fung, K.-Y. (eds) Symposium on Aerodynamics & Aeroacoustics, Tuscon, Arizona, 1–2 March 1993, pp. 173–186. World Scientific, Singapore (1994)

    Google Scholar 

  178. Rott N., Cantwell B.: Vortex drift, I. Dynamic interpretation. Phys. Fluids 5, 1443–1450 (1993)

    MATH  MathSciNet  Google Scholar 

  179. Rücker, A.W.: The physical work of von Helmholtz. Nature 51, 472–475, 493–495 (1895)

    Google Scholar 

  180. Ryu K.W., Lee D.J.: Interaction between a vortex ring and a rigid sphere. Eur. J. Mech. B-Fluids 16, 645–664 (1997)

    MATH  Google Scholar 

  181. Saffman P.G.: The velocity of viscous vortex rings. Stud. Appl. Math. 49, 371–380 (1970)

    MATH  Google Scholar 

  182. Saffman P.G.: Dynamics of vorticity. J. Fluid Mech. 106, 49–58 (1981)

    MATH  MathSciNet  Google Scholar 

  183. Saffman P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  184. Samimy G.K., Breuer K.S., Leal L.G., Steen P.H.: A Galery of Fluid Motion. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  185. Sau R., Manesh K.: Passive scalar mixing in vortex rings. J. Fluid Mech. 582, 449–461 (2007)

    MATH  MathSciNet  Google Scholar 

  186. Scheel H. (eds): Gedanke von Helmholtz über schöpferische Impulse und über das Zusammenwirken Verschiedener Wissenschafttszweige. sAkademie, Berlin (1972)

    Google Scholar 

  187. Schram C., Hirschberg A.: Application of vortex sound theory to vortex-pairing noise: sensitivity to errors in flow data. J. Sound Vibr. 266, 1079–1098 (2003)

    Google Scholar 

  188. Schram C., Hirschberg A., Verzicco R.: Sound produced by vortex pairing: prediction based on particle image velocimetry. AIAA J. 42, 2234–2244 (2004)

    Google Scholar 

  189. Schuster A.: The Progress of Physics During 33 years, 1875–1908. Cambridge University Press, Cambridge (1911) (Reprinted in 1975)

    Google Scholar 

  190. Schwenk T.: Sensitive Chaos. 2nd edn. Steiner, London (1996)

    Google Scholar 

  191. Sen, N.R.: On circular vortex rings of finite section in incompressible fluids. Bull. Calcutta Math. Soc. 13, 117–140 (1922/1923)

    Google Scholar 

  192. Shadden S.C., Dabiri J.O., Marsden J.E.: Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys. Fluids 18, 047105-1–047105-11 (2006)

    MathSciNet  Google Scholar 

  193. Shariff K., Leonard A.: Vortex rings. Ann. Rev. Fluid Mech. 24, 235–279 (1992)

    MathSciNet  Google Scholar 

  194. Shariff K., Leonard A., Ferziger J.H.: Dynamical systems analysis of fluid transport in time-periodic vortex ring flows. Phys. Fluids 18, 047104-1–047104-11 (2006)

    MathSciNet  Google Scholar 

  195. Shariff K., Leonard A., Ferziger J.H.: A contour dynamics algorithm for axisymmetric flow. J. Comput. Phys. 227, 9044–9062 (2008)

    MATH  MathSciNet  Google Scholar 

  196. Shariff K., Leonard A., Zabusky N.J., Ferziger J.H.: Acoustics and dynamics of coaxial interacting vortex rings. Fluid Dyn. Res. 3, 337–343 (1988)

    Google Scholar 

  197. Shashikanth B.N., Marsden J.E.: Leapfrogging vortex rings: Hamiltonian structure, geometric phases and discrete reduction. Fluid Dyn. Res. 33, 333–356 (2003)

    MATH  MathSciNet  Google Scholar 

  198. Silliman R.H.: William Thomson: Smoke rings and nineteenth-century atomism. Isis 54, 461–474 (1963)

    Google Scholar 

  199. Smith C., Wise M.N.: Energy and Empire: A biographical Study of Lord Kelvin. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  200. Sommerfeld A.: Lectures on Theoretical Physics., vol. 2. Mechanics of Deformable Bodies. Academic, New York (1950)

    MATH  Google Scholar 

  201. Stokes G.G.: On the theories of the internal friction of fluids in motion, and the equilibrium and motion of elastic solids. Trans. Cambr. Phil. Soc. 8, 287–319 (1845)

    Google Scholar 

  202. Sullivan I.S., Niemela J.J., Hershberger R.E., Bolster D., Donnelly R.J.: Dynamics of thin vortex rings. J. Fluid Mech. 609, 319–347 (2008)

    MATH  MathSciNet  Google Scholar 

  203. Tait P.G.: Lectures on Some Recent Advances in Physical Science, with a Special Lecture on Force. 2nd edn. Macmillan, London (1876)

    Google Scholar 

  204. Tang S.K., Ko N.W.M.: Sound generation by a vortex ring collision. J. Acoust. Soc. Am. 98, 3418–3427 (1995)

    Google Scholar 

  205. Tang S.K., Ko N.W.M.: On sound generated by the interaction of two inviscid vortex rings moving in the same direction. J. Sound Vibr. 187, 287–310 (1996)

    Google Scholar 

  206. Tang S.K., Ko N.W.M.: Basic sound generation mechanisms in inviscid vortex interactions at low Mach number. J. Sound Vibr. 262, 87–115 (2003)

    Google Scholar 

  207. Taylor G.I.: Sir Horace Lamb, F.R.S. Nature 135, 255–257 (1935)

    MATH  Google Scholar 

  208. Taylor G.I.: Formation of a vortex ring by giving an impulse to a circular disk and then dissolving it away. J. Appl. Phys. 24, 104 (1953)

    MathSciNet  Google Scholar 

  209. Thompson S.P.: The Life of William Thomson, Baron Kelvin of Largs, vol. I. Macmillan, London (1910)

    Google Scholar 

  210. Thomson J.J.: On the vibrations of a vortex ring, and the action of two vortex rings upon each other. Phil. Trans. R. Soc. Lond. A 173, 493–521 (1882)

    Google Scholar 

  211. Thomson J.J.: A Treatise on the Motion of Vortex Rings An Essay to Which the Adams Prize was Adjudged in 1882, in the University of Cambridge. Macmillan, London (1883) (Reprinted in 1968)

    Google Scholar 

  212. Thomson J.J., Newall H.F.: On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. Lond. 39, 417–436 (1885)

    Google Scholar 

  213. Thomson W.: On vortex atoms. Phil. Mag. (Ser. 4) 34, 15–24 (1867)

    Google Scholar 

  214. Thomson W.: [The translatory velocity of a circular vortex ring]. Phil. Mag. (Ser. 4) 34, 511–512 (1867)

    Google Scholar 

  215. Thomson W.: On vortex motion. Trans. R. Soc. Edinburgh 25, 217–260 (1869)

    Google Scholar 

  216. Tokaty G.A.: A History and Philosophy of Fluid Mechanics. Dover, New York (1994)

    MATH  Google Scholar 

  217. Truesdell C: The Kinematics of Vorticity. Indiana University Press, Bloomington (1954)

    MATH  Google Scholar 

  218. Turner R.S.: Helmholtz, Hermann von. In: Gillispie, C.C. (eds) Dictionary of Scientific Biography, vol VI, pp. 241–253. Scribner’s Sons, New York (1972)

    Google Scholar 

  219. Uchiyama T., Yagami H.: Numerical simulation for the collision between a vortex ring and solid particles. Powder Tech. 188, 73–80 (2008)

    Google Scholar 

  220. Vasil’ev N.S.: Reduction of the equations of motion of coaxial vortex rings to canonical form. (in Russian). Zap. Mat. Otd. Novoross. Obshch. Estest. 21, 1–12 (1913)

    Google Scholar 

  221. Vasil’ev N.S.: On the motion of an infinite row of coaxial circular vortex rings with the same initial radii. (in Russian). Zap. Fiz.-Mat. Fak. Imp. Novoross. Univ. 10, 1–44 (1914)

    Google Scholar 

  222. Verzicco R., Iafati A., Ricardi G., Fatica M.: Analysis of the sound generated by the pairing of two axisymmetric co-rotating vortex rings. J. Sound Vibr. 200, 347–358 (1997)

    Google Scholar 

  223. de Villamil R.: ABC of Hydrodynamics. Spon, London (1912)

    MATH  Google Scholar 

  224. de Villamil R.: Motion of Liquids. Spon, London (1914)

    Google Scholar 

  225. Villat H.: Leçons sur la théorie des tourbillons. Gauthier-Villars, Paris (1930)

    MATH  Google Scholar 

  226. Wakelin S.L., Riley N.: Vortex rings interactions II. Inviscid models. Q. J. Mech. Appl. Math. 49, 287–309 (1996)

    MATH  Google Scholar 

  227. Wakelin S.L., Riley N.: On the formation and propagation of vortex rings and pairs of vortex rings. J. Fluid Mech. 332, 121–139 (1997)

    MATH  Google Scholar 

  228. Weidman P.D., Riley N.: Vortex ring pairs: numerical simulation and experiment. J. Fluid Mech. 257, 311–337 (1993)

    MathSciNet  Google Scholar 

  229. Werner F.: Hermann Helmholtz’ Heidelberger Jahre (1858–1871). Springer, Berlin (1997)

    Google Scholar 

  230. Wien W.: Lehrbuch der Hydrodynamik. Hirzel, Leipzig (1900)

    MATH  Google Scholar 

  231. Wien, W.: Hydrodynamische Untersuchungen von H. v. Helmholtz. Sber. Preuss. Akad. Wiss. 716–736 (1904)

  232. Wilkens F., Jacobi M., Schwenk W.: Understanding Water. 2nd edn. Floris Books, Edinburgh (2005)

    Google Scholar 

  233. Wood R.W.: Vortex rings. Nature 63, 418–420 (1901)

    Google Scholar 

  234. Wu Y.-Z., Ma H.-Y., Zhou M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Google Scholar 

  235. Yamada H., Konsaka T., Yamabe H., Matsui T.: Flow field produced by a vortex ring near a plane wall. J. Phys. Soc. Jpn. 51, 1663–1670 (1982)

    Google Scholar 

  236. Yamada H., Matsui T.: Preliminary study of mutual slip-through of a pair of vortices. Phys. Fluids 21, 292–294 (1978)

    Google Scholar 

  237. Yamada H., Matsui T.: Mutual slip-through of a pair of vortex rings. Phys. Fluids 22, 1245–1249 (1979)

    Google Scholar 

  238. Ye Q., Chu C., He Y.: Coaxial interactions of two vortex rings or of a ring with a body. Acta Mech. Sinica 11, 219–228 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viatcheslav V. Meleshko.

Additional information

Communicated by H. Aref

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meleshko, V.V. Coaxial axisymmetric vortex rings: 150 years after Helmholtz. Theor. Comput. Fluid Dyn. 24, 403–431 (2010). https://doi.org/10.1007/s00162-009-0148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0148-z

Keywords

PACS

Navigation