Skip to main content
Log in

A multiphase phase-field study of three-dimensional martensitic twinned microstructures at large strains

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The nanoscale multiphase phase-field model for stress and temperature-induced multivariant martensitic transformation under large strains developed by the authors in Basak and Levitas (J Mech Phys Solids 113:162–196, 2018) is revisited, the issues related to the gradient energy and coupled kinetic equations for the order parameters are resolved, and a thermodynamically consistent non-contradictory model for the same purpose is developed in this paper. The model considers \(N+1\) order parameters to describe austenite and N martensitic variants. One of the order parameters describes austenite\(\leftrightarrow \)martensite transformations, and the remaining N order parameters, whose summation is constrained to the unity, describe the transformations between the variants. A non-contradictory gradient energy is used within the free energy of the system to account for the energies of the interfaces. In addition, a kinetic relationship for the rate of the order parameters versus thermodynamic driving forces is suggested, which leads to a system of consistent coupled Ginzburg–Landau equations for the order parameters. An approximate general crystallographic solution for twins within twins is presented, and the explicit solution for the cubic to tetragonal transformations is derived. A large strain-based finite element method is developed for solving the coupled Ginzburg–Landau and elasticity equations, and it is used to simulate a 3D complex twins within twins microstructure. A comparative study between the crystallographic solution and the simulation results is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhattacharya, K.: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  2. Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  3. Adachi, K., Wayman, C.M.: Transformation behavior of nearly stoichiometric Ni–Mn alloy. Metall. Trans. A 16, 1567–1579 (1985)

    Google Scholar 

  4. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Bhattacharya, K.: Wedge-like microstructure in martensites. Acta Metall. Mater. 39, 2431–2444 (1991)

    Google Scholar 

  6. Porter, D.A., Easterling, K.E., Sherif, M.Y.: Phase Transformations in Metals and Alloys. CRC Press, Boca Raton (2000)

    Google Scholar 

  7. Wang, J., Steinmann, P.: On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. I: theoretical formulation. Continu. Mech. Thermodyn. 26, 563–592 (2014)

  8. Govindjee, S., Hackl, K., Heinen, R.: An upper bound to the free energy of mixing by twin-compatible lamination for \(n\)-variant martensitic phase transformations. Continu. Mech. Thermodyn. 18, 443–453 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Schryvers, D., Boullaya, P., Potapov, P.L., Kohn, R.V., Ball, J.M.: Microstructures and interfaces in Ni–Al martensite: comparing HRTEM observations with continuum theories. Int. J. Solids Struct. 39, 3543–3554 (2002)

    Google Scholar 

  10. Chu, C.: Hysteresis and Microstructures: A Study of Biaxial Loading on Compound Twins of Copper–Aluminum–Nickel Single Crystals. PhD Dissertation, University of Minnesota (1993)

  11. Abeyaratne, R., Chu, C., James, R.D.: Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu–Al–Ni shape memory alloy. Philos. Mag. A 73, 457–497 (1996)

    ADS  Google Scholar 

  12. Schryvers, D., Holland-Moritz, D.: Austenite and martensite microstructures in splat-cooled Ni–Al. Intermetallics 6, 427–436 (1998)

    Google Scholar 

  13. James, R.D., Hane, K.F.: Martensitic transformations and shape memory materials. Acta Mater. 48, 197–222 (2000)

    ADS  Google Scholar 

  14. Hane, K.F., Shield, T.W.: Microstructure in a copper–aluminium–nickel shape-memory alloy. Proc. R. Soc. Lond. A 455, 3901–3915 (1999)

    ADS  Google Scholar 

  15. Ruddock, G.: A microstructure of martensite which is not a minimiser of energy: the X-interface. Arch. Rational. Mech. Anal. 127, 1–39 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Stupkiewicz, S., Lengiewicz, A.G.: Almost compatible X-microstructures in CuAlNi shape memory alloy. Continu. Mech. Thermodyn. 24, 149–164 (2012)

    ADS  Google Scholar 

  17. Umantsev, A.: Field Theoretic Method in Phase Transformations. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  18. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Mater. 27, 1085–1095 (1979)

    Google Scholar 

  19. Jin, Y.M., Artemev, A., Khachaturyan, A.G.: Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of \(\zeta _2\) martensite in AuCd alloys. Acta Mater. 49, 2309–2320 (2001)

    ADS  Google Scholar 

  20. Basak, A., Levitas, V.I.: Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains. J. Mech. Phys. Solids 113, 162–196 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Levin, V.A., Levitas, V.I., Zingerman, K.M., Freiman, E.I.: Phase-field simulation of stress-induced martensitic phase transformations at large strains. Int. J. Solids Struct. 50, 2914–2928 (2013)

    Google Scholar 

  22. Tůma, K., Hajidehib, M.R., Hrona, J., Farrellc, P.E., Stupkiewicz, S.: Phase field modeling of multivariant martensitic transformation at finite-strain: computational aspects and large-scale finite-element simulations. Comput. Methods Appl. Mech. Eng. 377, 113705 (2021)

    ADS  MathSciNet  Google Scholar 

  23. Artemev, A., Wang, Y., Khachaturyan, A.G.: Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stresses. Acta. Mater. 48, 2503–2518 (2000)

    ADS  Google Scholar 

  24. Artemev, A., Jin, Y., Khachaturyan, A.G.: Three-dimensional phase field model of proper martensitic transformation. Acta. Mater. 49, 1165–1177 (2001)

    ADS  Google Scholar 

  25. Salman, O.U., Finel, A., Delville, R., Schryvers, D.: The role of phase compatibility in martensite. J. Appl. Phys. 111, 103517 (2012)

    ADS  Google Scholar 

  26. Artemev, A., Slutsker, J., Roytburd, A.L.: Phase field modeling of self-assembling nanostructures in constrained films. Acta. Mater. 53, 3425–3432 (2005)

    ADS  Google Scholar 

  27. Seol, D.J., Hu, S.Y., Li, Y.L., Chen, L.Q., Oh, K.H.: Computer simulation of martensitic transformation in constrained films. Mater. Sci. Forum 408–412, 1645–1650 (2002)

    Google Scholar 

  28. Heo, T.W., Chen, L.Q.: Phase-field modeling of displacive phase transformations in elastically anisotropic and inhomogeneous polycrystals. Acta. Mater. 76, 68–81 (2014)

    ADS  Google Scholar 

  29. Fan, D., Chen, L.Q.: Computer simulation of twin formation during the displacive c\(\rightarrow \)t’ phase transformation in the zirconia–yttria system. J. Am. Ceram. Soc. 78, 769–773 (1995)

    Google Scholar 

  30. Shchyglo, O., Du, G., Engels, J.K., Steinbach, I.: Phase-field simulation of martensite microstructure in low-carbon steel. Acta Mater. 175, 415–425 (2019)

    ADS  Google Scholar 

  31. Shchyglo, O., Salman, U., Finel, A.: Martensitic phase transformations in Ni–Ti-based shape memory alloys: the Landau theory. Acta Mater. 60, 6784–6792 (2012)

    ADS  Google Scholar 

  32. Planes, A., Lloveras, P., Castán, T., Saxena, A., Porta, M.: Ginzburg–Landau modelling of precursor nanoscale textures in ferroelastic materials. Continu. Mech. Thermodyn. 24, 619–627 (2012)

    ADS  MathSciNet  Google Scholar 

  33. Kundin, J., Raabe, D., Emmerich, H.: A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J. Mech. Phys. Solids 59, 2082–2102 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Mamivand, M., Zaeem, M.A., Kadiri, H.E.: A review on phase field modeling of martensitic phase transformation. Comput. Mater. Sci. 77, 304–311 (2013)

    Google Scholar 

  35. Levitas, V.I., Javanbakht, M.: Surface tension and energy in multivariant martensitic transformations: phase-field theory, simulations, and model of coherent interface. Phys. Rev. Lett. 105, 165701 (2010)

    ADS  Google Scholar 

  36. Woldman, A.Y., Landis, C.M.: Phase-field modeling of ferroelectric to paraelectric phase boundary structures in single-crystal barium titanate. Smart Mater. Struct. 25, 035033 (2016)

    ADS  Google Scholar 

  37. Levitas, V.I., Levin, V.A., Zingerman, K.M., Freiman, E.I.: Displacive phase transitions at large strains: phase-field theory and simulations. Phys. Rev. Lett. 103, 025702 (2009)

    ADS  Google Scholar 

  38. Levitas, V.I., Javanbakht, M.: Phase-field approach to martensitic phase transformations: effect of martensite–martensite interface energy. Int. J. Mater. Res. 102, 652–665 (2011)

    Google Scholar 

  39. Lei, J.C.H., Li, L.J., Shu, Y.C., Li, J.Y.: Austenite–martensite interface in shape memory alloys. Appl. Phys. Lett. 96, 141910 (2010)

    ADS  Google Scholar 

  40. Hildebrand, F.E., Miehe, C.: A phase field model for the formation and evolution of martensitic laminate microstructure at finite strains. Philos. Mag. 92, 1–41 (2012)

    Google Scholar 

  41. Clayton, J.D., Knap, J.: A phase field model of deformation twinning: nonlinear theory and numerical simulations. Phys. D 240, 841–858 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Clayton, J.D.: Nonlinear thermodynamic phase field theory with application to fracture and dynamic inelastic phenomena in ceramic polycrystals. J. Mech. Phys. Solids 157, 104633 (2021)

    MathSciNet  Google Scholar 

  43. Clayton, J.D., Knap, J.: Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations. Continu. Mech. Thermodyn. 30, 421–455 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  44. She, H., Liu, Y., Wang, B., Ma, D.: Finite element simulation of phase field model for nanoscale martensitic transformation. Comput. Mech. 52, 949–958 (2013)

    MATH  Google Scholar 

  45. Levitas, V.I., Preston, D.L.: Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite \(\leftrightarrow \) Martensite. Phys. Rev. B 66, 134206 (2002)

  46. Levitas, V.I., Preston, D.L.: Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress-space analysis. Phys. Rev. B 66, 134207 (2002)

  47. Levitas, V.I.: Phase-field theory for martensitic phase transformations at large strains. Int. J. Plast. 49, 85–118 (2013)

    Google Scholar 

  48. Levitas, V.I.: Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 1. General theory. Int. J. Plast. 106, 164–185 (2018)

    Google Scholar 

  49. Babaei, H., Levitas, V.I.: Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 2. Simulations of phase transformations Si I\(\leftrightarrow \)Si II. Int. J. Plast. 107, 223–245 (2018)

    Google Scholar 

  50. Basak, A., Levitas, V.I.: An exact formulation for exponential-logarithmic transformation stretches in a multiphase phase field approach to martensitic transformations. Math. Mech. Solids 25, 1219–1246 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Levitas, V.I., Roy, A.M.: Multiphase phase field theory for temperature-induced phase transformations: formulation and application to interfacial phases. Acta Mater. 105, 244–257 (2016)

    ADS  Google Scholar 

  52. Basak, A.: Grain boundary-induced premelting and solid\(\leftrightarrow \) melt phase transformations: effect of interfacial widths and energies and triple junctions at the nanoscale. Phys. Chem. Chem. Phys. 23, 17953–17972 (2021)

    Google Scholar 

  53. Barchiesi, E., Hamila, N.: Maximum mechano-damage power release-based phase-field modeling of mass diffusion in damaging deformable solids. Z. Angew. Math. Phys. 73(1), 1–21 (2022)

    MathSciNet  MATH  Google Scholar 

  54. Garcke, H., Nestler, B., Stoth, B.: A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60, 295–315 (1999)

    MathSciNet  MATH  Google Scholar 

  55. Tůma, K., Stupkiewicz, S.: Phase-field study of size-dependent morphology of austenite-twinned martensite interface in CuAlNi. Int. J. Solids Struct. 97–98, 89–100 (2016)

    Google Scholar 

  56. Tůma, K., Stupkiewicz, S., Petryk, H.: Size effects in martensitic microstructures: finite-strain phase field model versus sharp-interface approach. J. Mech. Phys. Solids 95, 284–307 (2016)

    ADS  MathSciNet  Google Scholar 

  57. Tůma, K., Stupkiewicz, S., Petryk, H.: Rate-independent dissipation in phase-field modelling of displacive transformations. J. Mech. Phys. Solids 114, 117–142 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Hajidehi, M.R., Stupkiewicz, S.: Phase-field modeling of multivariant martensitic microstructures and size effects in nano-indentation. Mech. Mater. 141, 103267 (2020)

    Google Scholar 

  59. Levitas, V.I., Idesman, A.V., Preston, D.L.: Microscale simulation of martensitic microstructure evolution. Phys. Rev. Lett. 93, 105701 (2004)

    ADS  Google Scholar 

  60. Idesman, A.V., Levitas, V.I., Preston, D.L., Cho, J.Y.: Finite element simulations of martensitic phase transitions and microstructure based on strain softening model. J. Mech. Phys. Solids 53, 495–523 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Levitas, V.I., Esfahani, S.E., Ghamarian, I.: Scale-free modeling of coupled evolution of discrete dislocation bands and multivariant martensitic microstructure. Phys. Rev. Lett. 121, 205701 (2018)

    ADS  Google Scholar 

  62. Esfahani, S.E., Ghamarian, I., Levitas, V.I.: Strain-induced multivariant martensitic transformations: a scale-independent simulation of interaction between localized shear bands and microstructure. Acta Mater. 196, 430–443 (2020)

    ADS  Google Scholar 

  63. Babaei, H., Levitas, V.I.: Finite-strain scale-free phase-field approach to multivariant martensitic phase transformations with stress-dependent effective thresholds. J. Mech. Phys. Solids 144, 104114 (2020)

    MathSciNet  Google Scholar 

  64. Levitas, V.I., A.M. Roy, Preston, D.L.: Multiple twinning and variant-variant transformations in martensite: Phase-field approach. Phys. Rev. B 88, 054113 (2013)

  65. Steinbach, I., Pezzolla, F., Nestler, B., Seeßelberg, M., Prieler, R., Schmitz, G.J., Rezende, J.L.L.: A phase field concept for multiphase systems. Phys. D 94, 135–147 (1996)

    MATH  Google Scholar 

  66. Levitas, V.I., Roy, A.M.: Multiphase phase field theory for temperature- and stress-induced phase transformations. Phys. Rev. B 91, 174109 (2015)

    ADS  Google Scholar 

  67. Cho, J.Y., Idesman, A.V., Levitas, V.I., Park, T.: Finite element simulations of dynamics of multivariant martensitic phase transitions based on Ginzburg–Landau theory. Int. J. Solids Struct. 49, 1973–1992 (2012)

    Google Scholar 

  68. Levin, V.A., Zingerman, K.M.: Interaction and microfracturing pattern for successive origination (introduction) of pores in elastic bodies: finite deformation. Trans. ASME. J. Appl. Mech. 65, 431–435 (1998)

    ADS  Google Scholar 

  69. Levin, V.A.: Multiple Superposition of Large Deformation in Elastic and Viscoelastic Bodies. Nauka, Moscow (1999) (in Russian)

  70. Levin, V.A.: Theory of repeated superposition of large deformations. Elastic and viscoelastic bodies. Int. J. Solids Struct. 35, 2585–2600 (1998)

    MATH  Google Scholar 

  71. dell’Isola, F., Gouin, H., Rotoli, G.: Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations. Eur. J. Mech. B Fluids 15(4), 545–568 (1996)

  72. Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  73. Levitas, V.I.: Phase field approach to martensitic phase transformations with large strains and interface stresses. J. Mech. Phys. Solids 70, 154–189 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Levitas, V.I., Warren, J.A.: Phase field approach with anisotropic interface energy and interface stresses: large strain formulation. J. Mech. Phys. Solids 91, 94–125 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Levitas, V.I.: Thermomechanical theory of martensitic phase transformations in inelastic materials. Int. J. Solids Struct. 35, 889–940 (1998)

    MathSciNet  MATH  Google Scholar 

  76. Jog, C.S.: Continuum Mechanics: Foundations and Applications of Mechanics (Volume I). Cambridge University Press, New Delhi (2015)

    Google Scholar 

  77. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational. Mech. Anal. 13(1), 167–178 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  78. Hütter, G.: An extended Coleman–Noll procedure for generalized continuum theories. Continu. Mech. Thermodyn. 28, 1935–1941 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Tóth, G.I., Pusztai, T., Granasi, L.: Consistent multiphase-field theory for interface driven multidomain dynamics. Phys. Rev. B 92, 184105 (2015)

    ADS  Google Scholar 

  80. Bollada, P.C., Jimack, P.K., Mullis, A.M.: Multiphase field modelling of alloy solidification. Comput. Mater. Sci. 171, 109085 (2020)

    Google Scholar 

  81. Borgnakke, C., Sonntag, R.E.: Fundamentals of Thermodynamics. Wiley, USA (2013)

    Google Scholar 

  82. Basak, A., Levitas, V.I.: Finite element procedure and simulations for a multiphase phase field approach to martensitic phase transformations at large strains and with interfacial stresses. Comput. Methods Appl. Mech. Eng. 343, 368–406 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  83. Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)

    ADS  Google Scholar 

  84. Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal.II library, version 8.4. J. Numer. Math. 24, 135–141 (2016)

  85. Ueland, S.M., Schuh, C.A.: Grain boundary and triple junction constraints during martensitic transformation in shape memory alloys. J. Appl. Phys. 114(39), 053503 (2013)

    ADS  Google Scholar 

  86. Basak, A., Levitas, V.I.: Interfacial stresses within boundary between martensitic variants: analytical and numerical finite strain solutions for three phase field models. Acta Mater. 139, 174–187 (2017)

    ADS  Google Scholar 

  87. Schryvers, D.: Microtwin sequences in thermoelastic Ni\(_x\), Al\(_{100-x}\) martensite studied by conventional and high-resolution transmission electron microscopy. Philos. Mag. A 68, 1017–1032 (1993)

    ADS  Google Scholar 

  88. Baele, I., Van Tendeloo, G., Amelinckx, S.: Microtwinning in Ni–Mn resulting from the \(\beta \rightarrow \theta \) martensitic transformation. Acta Metall. 35, 401–412 (1987)

    Google Scholar 

  89. Javanbakht, M., Ghaedi, M.S., Barchiesi, E., Ciallella, A.: The effect of a pre-existing nanovoid on martensite formation and interface propagation: a phase field study. Math. Mech. Solids 26, 90–109 (2021)

    MathSciNet  MATH  Google Scholar 

  90. Chen H., Levitas V.I., Popov D., Velisavljevic, N.: Nontrivial nanostructure, stress relaxation mechanisms, and crystallography for pressure-induced Si-I \(\rightarrow \) Si-II phase transformation. Nat. Commun. 13, 9821–9826) (2022)

  91. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

AB acknowledges the support from SERB (SRG/2020/001194) and IIT Tirupati (NFSG/2122/17). VL acknowledges the support from NSF (CMMI-1943710 and DMR-1904830) and Iowa State University (Vance Coffman Faculty Chair Professorship). The simulations were performed at Extreme Science and Engineering Discovery Environment (XSEDE), allocations TG-MSS140033 and MSS170015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery I. Levitas.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Thermodynamic formalism and dissipation inequality

We use the general thermodynamically consistent nonlocal framework developed by the authors in [20, 73] for deriving the governing coupled mechanics phase-field equations. For the completeness of the presentation, we briefly show the derivation of the dissipation inequality, which is used for deriving the Ginzburg–Landau equations for the order parameters and the constitutive relations in Sect. 2. We begin with the following dissipation inequalities obtained using the first and second laws of thermodynamics in \(\Omega _0\) [20, 73]:

$$\begin{aligned} \rho _0{{\mathcal {D}}}= & {} {\varvec{P}}:\dot{\varvec{F}}^T-\rho _0{\dot{\psi }}-\rho _0 s {\dot{\theta }}+\nabla _0\cdot (\varvec{Q}_0^\eta {\dot{\eta }}_0) +\sum _{i=1}^N\nabla _0\cdot (\varvec{Q}_i^\eta {\dot{\eta }}_i) \ge 0, \quad \text {and} -\frac{1}{\theta } \varvec{h}_0\cdot \nabla _0\theta \ge 0, \end{aligned}$$
(A.1)

where \({\mathcal {D}}\) is the power dissipation per unit mass. The symbol \({\varvec{P}}\) denotes the total first Piola–Kirchhoff stress tensor, \(\psi \) is the specific (per unit mass) Helmholtz free energy, \(\rho _0\) denotes the mass density of \(V_0\), \(\theta >0\) is the absolute temperature, s is the specific entropy, \(\varvec{Q}_l^\eta \) (\(l=1,\ldots ,N\)) are the generalized force vectors in \(\Omega _0\) introduced for the balance of some of the terms in the inequality (A.1) [20, 73], and \(\varvec{h}_0\) is the heat flux vector. Based on inequality (A.1)\(_2\), we write the Fourier’s law \(\varvec{h}_0=-\varvec{K}_\theta \cdot \nabla _0\theta \), where \(\varvec{K}_\theta \) is the heat conductivity tensor which is symmetric and positive semi-definite. If the body is at a uniform temperature, as assumed for the numerical simulation in Sect. 4.2, \(\varvec{h}_0=\varvec{0}\).

The material time derivative of the system free energy given by in Eqs. (2.6) and (2.7) is obtained as

$$\begin{aligned} {\dot{\psi }}= & {} \frac{J_t}{\rho _0}\frac{\partial \psi ^e}{\partial \varvec{F}_e}\cdot \varvec{F}_t^{-T}:\dot{\varvec{F}}^T -\frac{J_t}{\rho _0}\varvec{F}_e^T\cdot \frac{\partial \psi ^e}{\partial \varvec{F}_e}\cdot \varvec{F}_t^{-T}:\dot{\varvec{F}}_t^T + \frac{J_t\psi ^e}{\rho _0}\varvec{F}_t^{-T}:\dot{\varvec{F}}_t^T +J(\breve{\psi }^{\theta }+\psi ^\nabla ){\varvec{F}}^{-T}:\dot{\varvec{F}}^T \nonumber \\{} & {} +\sum _{i=0}^N\left( J\frac{\partial (\breve{\psi }^{\theta }+\psi ^\nabla )}{\partial \eta _i}+\frac{\partial ({\tilde{\psi }}^\theta +\psi ^p)}{\partial \eta _i}+\frac{J_t}{\rho _0}\left. \frac{\partial \psi ^e}{\partial \eta _i}\right| _{\varvec{F}_e}\right) {\dot{\eta }}_i +J\sum _{i=0}^N\frac{\partial \psi ^\nabla }{\partial \nabla \eta _i}\cdot \dot{\overline{\nabla \eta _i}} + \frac{\partial \psi }{\partial \theta }{\dot{\theta }}, \nonumber \\ \end{aligned}$$
(A.2)

where we have used \(\dot{\overline{det\,\varvec{T}}}=({det\,\varvec{T}}) \varvec{T}^{-1}:\dot{\varvec{T}}\), and \(\dot{\overline{\varvec{T}^{-1}}}=-\varvec{T}^{-1}\cdot \dot{\varvec{T}}\cdot \varvec{T}^{-1}\) for an arbitrary invertible second-order tensor \(\varvec{T}(t)\). Using the relation

$$\begin{aligned} \sum _{l=0}^N\frac{\partial \psi ^\nabla }{\partial \nabla \eta _l}\cdot \dot{\overline{\nabla \eta _l}} = \sum _{l=0}^N\frac{\partial \psi ^\nabla }{\partial \nabla \eta _l}\cdot \dot{\overline{(\varvec{F}^{-T}\cdot {\nabla _0\eta _l})}} =\sum _{l=0}^N\left( \varvec{F}^{-1}\cdot \frac{\partial \psi ^\nabla }{\partial \nabla \eta _l}\cdot \dot{\overline{ \nabla _0\eta _l}} -\nabla \eta _l\otimes \varvec{F}^{-1}\cdot \frac{\partial \psi ^\nabla }{\partial \nabla \eta _l}:\dot{\varvec{F}}^T \right) , \nonumber \\ \end{aligned}$$
(A.3)

where we have used \( \nabla \eta _l=\varvec{F}^{-T}\cdot \nabla _0\eta _l\), and noticing that \(\varvec{F}_t\) is a function of all the order parameters [see Eq. (2.5)], we rewrite Eq. (A.2) as

$$\begin{aligned} {\dot{\psi }}= & {} \left( \frac{J_t}{\rho _0}\frac{\partial \psi ^e}{\partial \varvec{F}_e}\cdot \varvec{F}_t^{-T} +J(\breve{\psi }^{\theta }+\psi ^\nabla ){\varvec{F}}^{-T} -J \sum _{l=0}^N\nabla \eta _l \otimes \varvec{F}^{-1}\cdot \frac{\partial \psi ^\nabla }{\partial \nabla \eta _l}\right) : \dot{\varvec{F}}^T \nonumber \\{} & {} \quad +\sum _{l=0}^N J\varvec{F}^{-1}\cdot \frac{\partial \psi ^\nabla }{\partial \nabla \eta _l} \cdot \dot{\overline{ \nabla _0\eta }}+\frac{\partial \psi }{\partial \theta }{\dot{\theta }} + \nonumber \\ {}{} & {} \sum _{l=0}^N\left( J\frac{\partial (\breve{\psi }^{\theta }+\psi ^\nabla )}{\partial \eta _l}+ \frac{\partial ({{\tilde{\psi }}}^\theta +\psi ^p)}{\partial \eta _l} +\frac{J_t}{\rho _0}\left. \frac{\partial \psi ^e}{\partial \eta _l}\right| _{\varvec{F}_e}\right. \nonumber \\{} & {} \left. + \left( \frac{J_t\psi ^e}{\rho _0}\varvec{F}_t^{-T} - \frac{J_t}{\rho _0}\varvec{F}_e^T\cdot \frac{\partial \psi ^e}{\partial \varvec{F}_e}\cdot \varvec{F}_t^{-T} \right) :\frac{\partial {\varvec{F}}_t^T}{\partial \eta _l}\right) {\dot{\eta }}_i. \end{aligned}$$
(A.4)

We apply the Coleman–Noll procedure [77] (see [78] for its generalization to a nonlocal theory) to obtain the constitute relations. Using Eq. (A.4) in the inequality (A.1)\(_1\) and assuming that the dissipation rate is independent of \({\dot{\theta }}\), and \(\dot{\overline{ \nabla _0\eta _l}}\) (for all \(l=0,1,\ldots ,N\)), and neglecting the viscous dissipation within the solid, we get the constitutive relations for entropy \(s=-\displaystyle \frac{\partial \psi }{\partial \theta }\), generalized force vector \(\varvec{Q}_{l}^\eta = \rho _0J\varvec{F}^{-1}\cdot \displaystyle \frac{\partial \psi ^\nabla }{\partial \nabla \eta _l}\) for all \(l=0,1,\ldots ,N\) [77, 78], and the total first Piola–Kirchhoff stress tensor \({\varvec{P}}\) is given by Eq. (2.10)\(_1\). Considering these relations, the dissipation inequality (A.1)\(_1\) finally simplifies to (2.17) given in Sect. 2.4.2.

B Finite element procedure and numerical implementation

In this appendix, we briefly describe our FE formulation and derive the system of algebraic equations which are solved to compute the nodal displacements and order parameters in our 3D domain. We discretize the volume in the reference body into \(n_{el}\) finite elements, i.e., \(V_0\approx \cup _{el=1}^{n_{el}}V_0^{el}\). The total number of grid points is \(n_\textrm{grid}\). The boundary \(S_0\) consists of the edges and areas of some elements. We have developed the FE procedure for solving the couple mechanics, and phase-field equations using a non-monolithic scheme, where the order parameters are assumed to remain fixed while solving the mechanics equations and the displacements are assumed to remain fixed while solving the phase-field equations (see [82] for details).

FE procedure for mechanics problem. Writing the weak form of the equilibrium equation Eq. (2.9)\(_1\), we linearize it and discretize the linearized equation using the standard procedure [91] to obtain the following system of algebraic equations for computing the increment in the nodal displacements (see [82] for derivation)

$$\begin{aligned} \varvec{K}\cdot \Delta \varvec{u}^p = -{\varvec{r}}_u, \quad \text {where} \end{aligned}$$
(B.1)

\(\varvec{K}\) is the \(3\,n_\textrm{grid}\times 3\,n_\textrm{grid}\) global tangent stiffness matrix which is symmetric, \(\varvec{r}_u\) is the \(3\,n_\textrm{grid}\times 1\) global residual matrix, and \(\Delta \varvec{u}^p\) is the \(3\,n_\textrm{grid}\times 1\) incremental displacement matrix at the p-th iteration. The global matrix \(\varvec{K}\) is obtained by using the standard assembly operation on the elemental tangent matrix, which is obtained using the following \(3\times 3\) matrix related to the nodes \(\iota \) and \(\kappa \) of each element (index as el)

$$\begin{aligned} {\varvec{ K}}^{el}_{\iota \kappa }= \int _{V_0^{el}}\left( {{\varvec{B}}_{\iota }^{el}}^T\cdot {{{\textbf {{\textsf { C}}}}}}^{el}\cdot {\varvec{B}}_{\kappa }^{el}+G_{\iota \kappa }{\varvec{I}}\right) \, dV_0^{el}. \end{aligned}$$
(B.2)

The size of the elemental matrix \(\varvec{K}^{el}\) is \(3\,n_g\times 3\,n_g\), where \(n_g\) is the number of nodes in an element. The global \(\varvec{r}_u\) matrix is obtained by assembling the elemental residual matrix obtained using the following \(3\times 1\) matrix related to node \(\iota \) of each element

$$\begin{aligned} ({\varvec{r}_\iota ^{el}})_u = \int _{V_0^{el}}J^{el}{\varvec{B}_{\iota }^{el}}^T\cdot \varvec{\sigma }^{el}\, dV_0^{el}. \end{aligned}$$
(B.3)

The size of the elemental \({\varvec{r}}^{el}\) matrix is \(3\,n_g\times 1\). Here, we enlist the other symbols in Eq. (B.2). \({{{\textbf {{\textsf {C}}}}}}^{el}= {{{\textbf {{\textsf {C}}}}}}^{el}_e+{{{\textbf {{\textsf {C}}}}}}^{el}_{st}\) is the \(6\times 6\) elemental stiffness matrix and \( {{\textbf {{\textsf { C}}}}}^{el}_e\) and \({{{\textbf {{\textsf { C}}}}}}^{el}_{st}\) are the \(6\times 6\) elemental elastic and structural stiffness matrices, respectively. Their components are obtained from the following two fourth-order tensors in \(\Omega \) (see [82] for derivation):

$$\begin{aligned} \mathsf{{C}}_{(e)abcd}= & {} J_e^{-1} F_{(e)ap}F_{(e)bq}F_{(e)cr}F_{(e)ds}\hat{{\mathcal {C}}}_{(e)pqrs}, \quad \text {and} \nonumber \\ \mathsf{{C}}_{(st)abcd}= & {} \sigma _{(st)ab}\delta _{cd}+\delta _{ab}\sigma _{(st)cd}-(\sigma _{(st)ac}\delta _{bd}+\sigma _{(st)ad} \delta _{bc}+\delta _{ac}\sigma _{(st)bd}+\delta _{ad}\sigma _{(st)bc})\nonumber \\{} & {} +\rho _0J(\breve{\psi }^\theta +\psi ^\nabla )(\delta _{ac}\delta _{bd}+\delta _{ad}\delta _{bc}-\delta _{ab}\delta _{cd}), \end{aligned}$$
(B.4)

respectively, and using the Voigt representation. In Eq. (B.4)\(_1\), \(\displaystyle \hat{\varvec{{\mathcal {C}}}}_{(e)}:=\frac{\partial ^2\psi ^e}{\partial \varvec{E}_e\partial \varvec{E}_e}\) is the fourth-order elasticity tensor defined in \(\Omega _t\) [82]. We denote the shape functions for the \(\iota \)th grid point in element \(V_0^{el}\) as \(N_\iota \) for \(\iota =1,\ldots , n_g\). The standard \(\nabla N_\iota \) and \(\varvec{B}_\iota ^{el}\) matrices of sizes \(3\times 1\) and \(6\times 3\), respectively, are given by [91]

$$\begin{aligned} \nabla N_\iota= & {} \begin{bmatrix} N_{\iota , 1} \\ N_{\iota , 2} \\ N_{\iota , 3} \\ \end{bmatrix}; \quad \text {and} \quad \varvec{B}_{\iota }^{el} = \begin{bmatrix} N_{\iota , 1}&{} 0&{} 0 \\ 0 &{} N_{\iota , 2} &{} 0 \\ 0 &{} 0 &{} N_{\iota , 3} \\ N_{\iota , 2} &{} N_{\iota , 1} &{} 0 \\ 0 &{} N_{\iota , 3} &{} N_{\iota , 2} \\ N_{\iota , 3} &{} 0 &{} N_{\iota , 1} \\ \end{bmatrix}, \end{aligned}$$
(B.5)

where the comma followed by the number designates the derivative with respect to \(r_i\) (for \(i=1,2,3\)) in \(\Omega \). In Eq. (B.3), \(\varvec{\sigma }^{el}=\{\sigma _{11},\,\sigma _{22},\,\sigma _{33},\,\sigma _{12},\,\sigma _{23},\,\sigma _{13} \}^T\) is the \(6\times 1\) matrix whose elements are the components of the total stress \(\varvec{\sigma }\) given by Eq. (2.13)\(_{1}\). In Eq. (B.2)\(_1\), \(G_{\iota \kappa }{\varvec{I}} = J^{el}\,(\nabla N_\iota ^T\cdot \varvec{\sigma }\cdot \nabla N_\kappa )\,{\varvec{I}}\) is the geometric part of the tangent matrix \(\varvec{K}\), and here note that \(\varvec{\sigma }\) is a \(3\times 3\) matrix (see Chapter 3 of [91]). Finally, solving Eq. (B.1) iteratively using Newton’s method, the \(3n_{grid}\times 1\) nodal displacement matrix is updated after the \(p^{th}\) iteration using

$$\begin{aligned} \varvec{u}^p = \varvec{u}^{p-1}+\Delta \varvec{u}^p. \end{aligned}$$
(B.6)

FE procedure for Ginzburg–Landau equations. We discretize the time rate of the order parameters as

$$\begin{aligned} {\dot{\eta }}_l = (c_1\eta _l^n+c_2\eta _l^{n-1}+c_3\eta _l^{n-2}) /\Delta t^n \quad \text { for all }l=0,1,2,\ldots ,N, \end{aligned}$$
(B.7)

where the constants \(c_1\), \(c_2\), and \(c_3\) take the values 1, \(-1\), and 0, respectively, for BDF scheme of order one, and their values are 1.5, \(-2\), and 0.5, respectively, for BDF scheme of order two. The time step size \(\Delta t^n\) at the nth iteration is chosen which yields a converged solution for the N order parameters. The superscript n designates the time index, and the time instance after \((n-1)\)th iteration is given by \(t^n=t^{n-1}+\Delta t^n\). Using Eq. (B.7) in the Ginzburg–Landau equations (2.23) and (2.29), we write down their weak forms, linearize the weak forms and discretize them and finally, do the assembly operation using the standard procedure [91] to obtain the system of algebraic equations for the N independent order parameter \(\eta _l\) (say \(\eta _0,\eta _1,\ldots ,\eta _{N-1})\):

$$\begin{aligned} {\varvec{T}_l} \cdot \Delta \varvec{\eta }_l^{n,q}=-\varvec{r}_l\quad \text {for }l=0,1,\ldots , N-1. \end{aligned}$$
(B.8)

In Eq. (B.8), \(\varvec{T}_l\) is \(n_\textrm{grid}\times n_{grid}\) symmetric global matrix related to \(\eta _l\) and it is given by

$$\begin{aligned} \varvec{T}_l(\eta ^{n,q-1}_k) = c_1\varvec{M}_l +\Delta t^n\varvec{H}_l+\Delta t^n\varvec{G}_l. \end{aligned}$$
(B.9)

The global mass matrix \(\varvec{M}_l\), global Laplace matrix \(\varvec{H}_l\), and global nonlinear matrix \(\varvec{G}_l\) are obtained by applying the standard assembly operation of the corresponding \(n_g\times n_g\) elemental mass, Laplace, and nonlinear matrices, respectively. The \(\iota \kappa \) components of the elemental mass, Laplace, and nonlinear matrices are given by

$$\begin{aligned} (\varvec{M}_l^{el})_{\iota \kappa }= & {} \int _{V_0^{el}} N_\iota N_\kappa \,dV_0^{el}, \nonumber \\ (\varvec{H}_l^{el})_{\iota \kappa }= & {} \int _{V_0^{el}}h_l^{n,q-1} {L_l^\beta }J^n(\nabla N_\iota \cdot \nabla N_\kappa ) dV_0^{el},\nonumber \\ (\varvec{G}_l^{el})_{\iota \kappa }= & {} \int _{V_0^{el}}\left. \frac{\partial f_l^n(\eta _l^{n,q-1})}{\partial \eta _l^n}\right| _{\varvec{F}} N_\iota N_\kappa dV_0^{el}, \end{aligned}$$
(B.10)

respectively, where \(h_0^{n,q-1}=1\), \(L^\beta _0=L_{0M}\beta _{0M}\), \(h_l^{n,q-1}={\tilde{\varphi }}(a_\beta ,a_c,\eta _0^{n,q-1})\), and \(L^\beta _l=\sum _{k=1,\ne l}^NL_{lk}\beta _{lk}\) for \(l=1,\ldots ,N\). The expressions for \(f_l^n\) for \(l=0\) and \(l=1,\ldots ,N\) are given by Eqs. (B.13) and (B.14), respectively, and \(n_\textrm{grid}\) is the total number of degrees of freedom for \(\eta _l\). In Eq. (B.8), \(\Delta \varvec{\eta }_l^{n,q}\) is \(n_\textrm{grid}\times 1\) matrix for the increment of \(\eta _l\) at \(q^{th}\) Newton iteration in \(n^{th}\) time step, and \(\varvec{r}_l\) is \(n_\textrm{grid}\times 1\) residual matrix given by

$$\begin{aligned} \varvec{r}_l = (c_1\varvec{M}_l+\Delta t^n\varvec{H}_l)\cdot \varvec{\eta }_l^{n,q-1} + c_2\varvec{M}_l\cdot \varvec{\eta }_l^{n-1} + c_3\varvec{M}_l\cdot \varvec{\eta }_l^{ n-2}+\Delta t^n\varvec{f}_l, \end{aligned}$$
(B.11)

where \(n_\textrm{grid}\times 1\) global matrix \(\varvec{f}_l\) is obtained by assembling the \(n_g\times 1\) elemental matrices whose \(\iota \) component is

$$\begin{aligned} (\varvec{f}_l^{el})_\iota = \int _{V_0^{el}} f_l^n N_\iota dV_0^{el} \end{aligned}$$
(B.12)

for all \(l=0,1,\ldots ,N-1\). The order parameters after each iteration are updated using

$$\begin{aligned} {\varvec{\eta }_l^{n,q}}={\varvec{\eta }_l^{n,{q-1}}}+\Delta {\varvec{\eta }_l^{n,q}} \quad \text {for }l=0,1,\ldots , N-1. \end{aligned}$$

The nodal matrix \(\varvec{\eta }_N^{n,q}\) is then obtained using the constraint Eq. (2.1).

Following the procedure of [82], the expressions for \(f_0\) and \(f_i\) for \(i=1,2,\ldots ,N\) appearing in Eqs. (B.10)\(_3\) and (B.12) are obtained using Eqs. (2.54), (2.55), (2.56), and (2.57) as

$$\begin{aligned} f_0^n= & {} L_{0M}\left[ -\left( J^n {\varvec{F}^n}^{-1}\cdot \varvec{\sigma }_e^n\cdot \varvec{F}^n-J_t^n{\psi ^e}^n{\varvec{I}}\right) :\varvec{Y}_0+ {J}_t^n{\left. \frac{\partial {\psi ^e}^n}{\partial \eta _0}\right| _{\varvec{F}_e}}+ \rho _0\frac{\partial \varphi (a_\theta ,\eta _0^n)}{\partial \eta _0}\Delta \psi ^\theta + \right. J^n\rho _0{\bar{A}} \nonumber \\{} & {} \times \sum _{i=1}^{N-1}\sum _{j=i+1}^{N}{\eta _i^n}^2 {\eta _j^n}^2 \frac{\partial \varphi (a_b,\eta _0^n)}{\partial \eta _0} +J^n\rho _0 A_{0M}(\theta ) (2\eta _0^n- 6{\eta _0^n}^2+4{\eta _0^n}^3) + \frac{J^n}{2}\frac{\partial {\tilde{\varphi }}(a_\beta ,a_c,\eta _0^n)}{\partial \eta _0} \nonumber \\{} & {} \times \sum _{i=1}^{N-1}\sum _{j=i+1}^{N} \beta _{ij}\nabla \eta _i^n\cdot \nabla \eta _j^n +\rho _0\left( \sum _{i=1}^{N-1}\sum _{j=i+1}^N K_{0ij}{\eta _i^n}^2{\eta _j^n}^2+ \sum _{i=1}^{N-2}\sum _{j=i+1}^{N-1}\sum _{k=j+1}^N K_{0ijk}{\eta _i^n}^2{\eta _j^n}^2{\eta _k^n}^2\right) \nonumber \\{} & {} \times \left( 2(1-\varphi (a_K,\eta _0^n))\eta _0^n-\frac{\partial \varphi (a_K,\eta _0^n)}{\partial \eta _0}{\eta _0^n}^2\right) + \rho _0\frac{\partial \varphi (a_K, \eta _0^n)}{\partial \eta _0}\left( \sum _{i=1}^{N-1}\sum _{j=i+1}^N K_{ij}( \eta _i^n+\eta _j^n-1)^2 {\eta _i^n}^2{\eta _j^n}^2 \right. \nonumber \\{} & {} \left. \left. + \sum _{i=1}^{N-2}\sum _{j=i+1}^{N-1}\sum _{k=j+1}^{N}K_{ijk} {\eta _i^n}^2{\eta _j^n}^2{\eta _k^n}^2 + \sum _{i=1}^{N-3}\sum _{j=i+1}^{N-2}\sum _{k=j+1}^{N-1}\sum _{l=k+1}^N K_{ijkl} {\eta _i^n}^2{\eta _j^n}^2{\eta _k^n}^2{\eta _l^n}^2\right) \right] , \quad \text {and} \end{aligned}$$
(B.13)
$$\begin{aligned}{} & {} f_i^n({{\tilde{\eta }}}^n,({{\tilde{\eta }}}^\nabla )^n) = -\sum _{m=1,\ne i}^{N} L_{im} \left( {X}_{im}^{loc}+ {X}_{im}^{\nabla (1)}\right) \quad \text {for all }i=1,\ldots ,N, \quad \text {where} \end{aligned}$$
(B.14)
$$\begin{aligned} {X}_{im}^{loc}= & {} (J^n {\varvec{F}^n}^{-1}\cdot \varvec{\sigma }_e^n\cdot \varvec{F}^n-J_t^n{\psi ^e}^n{\varvec{I}}):(\varvec{Y}_i^n-\varvec{Y}_m^n)- {J}_t^n\left( {\left. \frac{\partial {\psi ^e}^n}{\partial \eta _i}\right| _{{\varvec{F}}_e}} - {\left. \frac{\partial {\psi ^e}^n}{\partial \eta _m}\right| _{{\varvec{F}}_e}}\right) -2J^n\rho _0{\bar{A}}\left( \sum _{j=1,\ne i}^{N}{\eta _j^n}^2\eta _i^n \right. \nonumber \\{} & {} \left. -\sum _{j=1,\ne m}^{N}{\eta _j^n}^2\eta _m^n\right) \varphi (a_b,\eta _0^n)- 2\rho _0\varphi (a_K,\eta _0^n) \left[ \sum _{j=1,\ne i}^{N} K_{ij}(\eta _i^n+\eta _j^n-1) (2\eta _i^n+\eta _j^n-1)\right. \eta _i^n{\eta _j^n}^2 \nonumber \\{} & {} \left. -\sum _{j=1,\ne m}^{N} K_{mj} (\eta _m^n+\eta _j^n-1)(2\eta _m^n+\eta _j^n-1)\eta _m^n{\eta _j^n}^2 \right] -2\rho _0\left[ \sum _{j=1,\ne i}^{N}K_{0ij}\eta _i^n{\eta _j^n}^2-\sum _{j=1,\ne m}^{N}K_{0mj}\eta _m^n {\eta _j^n}^2 \right. \nonumber \\{} & {} \left. + \sum _{j=1, \ne i}^{N-1}\sum _{k=j+1, \ne i}^{N} K_{0ijk}\eta _i^n {\eta _j^n}^2{\eta _k^n}^2- \sum _{j=1, \ne m}^{N-1}\sum _{k=j+1, \ne m}^{N} K_{0mjk}\eta _m^n{\eta _j^n}^2 {\eta _k^n}^2 \right] {\eta _0^n}^2(1-\varphi (a_K,\eta _0^n)) \nonumber \\{} & {} -2\rho _0\varphi (a_K,\eta _0^n) \left[ \sum _{j=1,\ne i}^{N-1}\sum _{k=j+1, \ne i}^{N}K_{ijk}\eta _i^n{\eta _j^n}^2{\eta _k^n}^2 + \sum _{j=1, \ne i}^{N-2}\sum _{k=j+1, \ne i}^{N-1}\sum _{l=k+1, \ne i}^{N} K_{ijkl}\eta _i^n{\eta _j^n}^2{\eta _k^n}^2{\eta _l^n}^2 \right. \nonumber \\{} & {} -\left. \sum _{j=1,\ne m}^{N-1}\sum _{k=j+1, \ne m}^{N} K_{mjk}\eta _m^n{\eta _j^n}^2{\eta _k^n}^2-\sum _{j=1, \ne m}^{N-2}\sum _{k=j+1, \ne m}^{N-1}\sum _{l=k+1, \ne m}^{N} K_{mjkl}\eta _m^n{\eta _j^n}^2{\eta _k^n}^2{\eta _l^n}^2 \right] \nonumber \\{} & {} \quad \text {for all }i,m=1,2,\ldots ,N, \end{aligned}$$
(B.15)
$$\begin{aligned} {X}_{im}^\nabla= & {} \nabla \cdot \left[ \frac{{\tilde{\varphi }}}{2} \left( \sum _{j=1,\ne i}^{N}\beta _{ij}\nabla \eta _j-\sum _{j=1,\ne m}^{N}\beta _{mj}\nabla \eta _j\right) \right] ={X}_{im}^{\nabla (1)}+{X}_{im}^{\nabla (2)}, \end{aligned}$$
(B.16)
$$\begin{aligned} {X}_{im}^{\nabla (2)}= & {} \nabla \cdot \left[ \frac{{\tilde{\varphi }}}{2} \left( \sum _{j=1,\ne i}^{N}\beta _{ij}\nabla \eta _j-\sum _{j=1,\ne i,m}^{N}\beta _{mj}\nabla \eta _j\right) \right] , \quad \text {and} \nonumber \\ {X}_{im}^{\nabla (1)}= & {} - \nabla \cdot \left[ \frac{{\tilde{\varphi }}}{2} \beta _{im} \nabla \eta _i \right] . \end{aligned}$$
(B.17)

In Eqs. (B.13) and (B.15), \(\varvec{Y}_l^n=\displaystyle {{{\varvec{F}_t^n}}^{-1}}\cdot {\frac{\partial \varvec{F}_t^n}{\partial \eta _l^n}}\) for all \(l=0,1,\ldots ,N\). Following the procedure of [91], the expressions for \(\partial f_0^n/\partial \eta _0^n\) and \(\partial f_i^n/\partial \eta _i^n\) appearing in Eq. (B.10)\(_3\) are derived using Eqs. (B.13) and (B.14).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, A., Levitas, V.I. A multiphase phase-field study of three-dimensional martensitic twinned microstructures at large strains. Continuum Mech. Thermodyn. 35, 1595–1624 (2023). https://doi.org/10.1007/s00161-022-01177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01177-6

Keywords

Navigation