Skip to main content
Log in

Setting of forced oscillations of viscoelastic coating

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper formulates the problem of determining the response of a flat monolithic viscoelastic coating to traveling pressure and shear waves in two-dimensional formulation. Examples of corresponding numerical computations for coating parameters typical for laboratory experiments on the reduction in turbulent viscous drag are presented. The coating parameters are demonstrated, which provide the setting time less than one period of the forced oscillations. It is shown that the time to reach the regime is practically the same for both the shear and the pressure forcing, the time being increased with a decrease in relative thickness of the coating, as well as with an increase in the forcing frequency, particularly at frequencies above the first resonance frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kramer, M.O.: Boundary layer stabilization by distributed damping. J. Am. Soc. Naval Eng. 72(1), 25–34 (1960). https://doi.org/10.1111/j.1559-3584.1960.tb02356.x

    Article  Google Scholar 

  2. Yu, H.-Y., Zhang, H.-C., Guo, Y.-Y., Tan, H.-P., Li, Y., Gong-Nan, X.: Thermodynamic analysis of shark skin texture surfaces for microchannel flow. Contin. Mech. Thermodyn. 28, 1361–1371 (2016). https://doi.org/10.1007/s00161-015-0479-5

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Kramer, M.O.: The dolphins’ secret. J. Am. Soc. Naval Eng. 73(1), 103–108 (1961). https://doi.org/10.1111/j.1559-3584.1961.tb02422.x

    Article  Google Scholar 

  4. Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities. J. Fluid Mech. 155, 465–510 (1985). https://doi.org/10.1017/S0022112085001902

    Article  MATH  ADS  Google Scholar 

  5. Carpenter, P.W., Lucey, A.D., Dixon, A.E.: The optimisation of compliant walls for drag reduction. In: Choi, K.-S. (ed.) Recent Developments in Turbulence Management, pp. 195–221. Springer, Berlin (1991). https://doi.org/10.1007/978-94-011-3526-9_11

    Chapter  Google Scholar 

  6. Kulik, V.M., Poguda, I.S., Semenov, B.N.: Experimental investigation of one-layer viscoelastic coating action on turbulent friction and wall pressure fluctuations. In: Choi, K.-S. (ed.) Recent Developments in Turbulence Management, pp. 263–289. Kluwer Academic Publishers, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3526-9

    Chapter  Google Scholar 

  7. Enakoutsa, K., Della Corte, A., Giorgio, I.: A model for elastic flexoelectric materials including strain gradient effects. Math. Mech. Solids 21(2), 67–84 (2016). https://doi.org/10.1177/1081286515588638

    Article  MathSciNet  MATH  Google Scholar 

  8. Turco, E., Barchiesi, E., dell’Isola, F.: A numerical investigation on impulse-induced nonlinear longitudinal waves in pantographic beams. Math. Mech. Solids 27(1), 1–27 (2021). https://doi.org/10.1177/10812865211010877

    Article  MathSciNet  MATH  Google Scholar 

  9. Benjamin, T.B.: The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows. J. Fluid Mech. 16(3), 436–450 (1963). https://doi.org/10.1017/S0022112063000884

    Article  MATH  ADS  Google Scholar 

  10. Duncan, J.H., Waxman, A.M., Tulin, M.P.: The dynamics of waves at the interface between a viscoelastic coating and a fluid flow. J. Fluid Mech. 158, 177–197 (1985). https://doi.org/10.1017/S0022112085002609

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Duncan, J.H.: The response of an incompressible, viscoelastic coating to pressure fluctuations in a turbulent boundary layer. J. Fluid Mech. 171, 339–363 (1986). https://doi.org/10.1017/S0022112086001477

    Article  ADS  Google Scholar 

  12. Semenov, B.N., Semenova, A.V.: Recent developments in interference analysis of compliant boundary action on near-wall turbulence. In: Proceedings of the International Symposium on Seawater Drag Reduction, Newport, RI, pp. 189–195 (1998)

  13. Lee, T., Fisher, M., Schwarz, W.H.: Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257, 373–401 (1993). https://doi.org/10.1017/S002211209300312X

    Article  ADS  Google Scholar 

  14. Choi, K.-S., Yang, X., Clayton, B.R., Glover, E.J., Atlar, M., Semenov, B.N., Kulik, V.M.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. A Math. Phys. Eng. Sci. 453, 2229–2240 (1997). https://doi.org/10.1098/rspa.1997.0119

    Article  MATH  ADS  Google Scholar 

  15. Kulik, V.M.: Method of measurement of vibration parameters of a real dolphin skin. In: Nachtigall, W., Wisser, A. (eds.) BIONA-Report 12, pp. 225–227. Gustav Fischer Verlag, Stuttgart (1998)

    Google Scholar 

  16. Semenov, B.N.: Analysis of four types of viscoelastic coatings for turbulent drag reduction. In: Emerging Techniques in Drag Reduction, pp. 187–206. Wiley, London (1996)

  17. Boiko, A.V., Kulik, V.M., Seoudi, B.M., Chun, H.H., Lee, I.: Measurement method of complex viscoelastic material properties. Int. J. Solids Struct. 47(3–4), 374–382 (2010). https://doi.org/10.1016/j.ijsolstr.2009.09.037

    Article  MATH  Google Scholar 

  18. Abd-alla, A., Giorgio, I., Galantucci, L., Hamdan, M., Del Vescovo, D.: Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity. Contin. Mech. Thermodyn. 28, 1–13 (2016). https://doi.org/10.1007/s00161-014-0400-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Xia, Q.-J., Huang, W.X., Xu, C.-X.: Direct numerical simulation of turbulent boundary layer over a compliant wall. J. Fluids Struct. 71, 126–142 (2017). https://doi.org/10.1016/j.jfluidstructs.2017.03.005

    Article  ADS  Google Scholar 

  20. Xia, Q.-J., Huang, W.-X., Xu, C.-X.: Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall. Acta. Mech. Sin. 35(2), 384–400 (2019). https://doi.org/10.1007/s10409-018-0820-x

    Article  MathSciNet  ADS  Google Scholar 

  21. Lee, I., Chun, H.H., Kim, J.: The transient response characteristics of compliant coating to pressure fluctuations. J. Mech. Sci. Technol. (KSME Int. J.) 20(4), 533–544 (2006)

    Article  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Secnd Pergamont Press, Oxford (1987)

    Google Scholar 

  23. Lemaitre, J. (ed.): Handbook of Materials Behavior Models. Academic Press, San Diego (2001)

    Google Scholar 

  24. Fung, Y.C.: Foundations of Solid Mechanics. Prentice Hall, Englewood Cliffs (1965)

    Google Scholar 

  25. Kulik, V.M.: Forced oscillations of a layer of a viscoelastic material under the action of a convective pressure wave. J. Appl. Mech. Tech. Phys. 48(2), 221–228 (2007). https://doi.org/10.1007/s10808-007-0029-4

    Article  MATH  ADS  Google Scholar 

  26. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-30726-6

    Book  MATH  Google Scholar 

  27. Shampine, L.F., Reichelt, M.W., Kierzenka, J.A.: Solving index-1 DAEs in MATLAB and Simulink. SIAM Rev. 41(3), 538–552 (1999). https://doi.org/10.1137/S003614459933425X

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Kulik, V.M., Semenov, B.N., Boiko, A.V., Seoudi, B.M., Chun, H.H., Lee, I.: Measurement of dynamic properties of viscoelastic materials. Exp. Mech. 49(3), 417–425 (2009). https://doi.org/10.1007/s11340-008-9165-x

    Article  Google Scholar 

  29. Kulik, V.M., Boiko, A.V., Bardakhanov, S.P., Park, H., Chun, H.H., Lee, I.: Viscoelastic properties of silicone rubber with admixture of SiO\(_{2}\) nanoparticles. Mater. Sci. Eng. A 528(18), 5729–5732 (2011). https://doi.org/10.1016/j.msea.2011.04.021

    Article  Google Scholar 

  30. Kulik, V.M., Boiko, A.V., Lee, I.: Drag reduction by compliant coatings made of a homogeneous material. Thermophys. Aeromech. 25(4), 537–546 (2018). https://doi.org/10.1134/S0869864318040054

    Article  Google Scholar 

  31. Kulik, V.M., Boiko, A.V., Lee, I.: Using two-layer compliant coatings to control turbulent boundary layer. Thermophys. Aeromech. 26(1), 47–57 (2019). https://doi.org/10.1134/S0869864319010056

    Article  ADS  Google Scholar 

  32. Benjamin, T.B.: Shearing flow over a wavy boundary. J. Fluid Mech. 6(2), 161–205 (1959). https://doi.org/10.1017/S0022112059000568

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Boiko, A.V., Kulik, V.M.: Stability of flat plate boundary layer over monolithic viscoelastic coatings. Dokl. Phys. 57(7), 285–287 (2012). https://doi.org/10.1134/S1028335812070051

    Article  ADS  Google Scholar 

  34. Kulik, V.M.: Action of a turbulent flow on a hard compliant coating. Int. J. Heat Fluid Flow 33(1), 232–241 (2012). https://doi.org/10.1016/j.ijheatfluidflow.2011.10.003

    Article  Google Scholar 

  35. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26(4), 465–519 (2000). https://doi.org/10.1145/365723.365727

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported by the Moscow Center of Fundamental and Applied Mathematics at INM RAS (Agreement with the Ministry of Education and Science of the Russian Federation No.075-15-2022-286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Boiko.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Spatial discretization

Appendix: Spatial discretization

We construct a nonuniform grid in \(0 \le y \le 1\) with nodes \(y_{j} = (x_{j}-1)/2\), \(j=0, \dots n+1\), where \(x_{j}\), \(j=1, \dots n\), are the roots of the derivatives of the Legendre polynomials of degree \(n+1\) and \(x_{0}=-1\) and \(x_{n+1}=1\) (Gauss–Lobatto nodes) [26]. Recall that \({\varvec{\xi }}\) and \({\varvec{\eta }}\) are the \(n+1\)—component vector columns containing, respectively, the values of the tangent and normal components of the displacement at all nodes \(y_{j}\), excluding the boundary node \(y=0\) due to the zero boundary conditions. In addition, let \(D_{y}\) and \(D_{yy}\) be the square matrices of order \(n+2\), which are discrete analogs of the first and second derivative operators on y at nodes \(y_{j}\), \(j=0, \dots n+1\), respectively. We compute these matrices using the algorithms described in [35]. Given the zero boundary conditions for the displacement components at node \(y_{0}=0\), we discard the first column and the first row in \(D_{y}\). In the resulting matrix, denote the first n rows by \(D_{1}\), and the last one by \(d_{1}\). Similarly, we obtain a matrix \(D_{2}\) based on \(D_{yy}\). The matrices \(D_{1}\) and \(D_{2}\) of size \(n \times n+1\) are the discrete analogs of the first and second derivative operators at nodes \(y_{j}\), \(j=1, \dots n\), respectively, for the displacements given at nodes \(j=1, \dots n+1\), and the \(n+1\)-element row \(d_{1}\) is a discrete analogue of the first derivative operator at node \(y_{n+1}=1\) for displacements given at nodes \(j=1, \dots n+1\).

Using the differentiation matrices, the spatially approximated equations (13) can be written as follows:

$$\begin{aligned} \begin{aligned} \hat{I} \frac{{\text {d}}^{2} {\varvec{\xi }}}{{\text {d}} t^{2}} =&\left( 2\mathrm {i}\omega \hat{I} + \theta L_{tl} \right) \frac{{\text {d}} {\varvec{\xi }}}{{\text {d}} t} + \mathrm {i}\theta k c_{lt} D_{1} \frac{{\text {d}} {\varvec{\eta }}}{{\text {d}} t} \\&+ \left( \omega ^{2} \hat{I} + (1 - \mathrm {i}\theta \omega ) L_{tl} \right) {\varvec{\xi }} + \mathrm {i}(1 - \mathrm {i}\theta \omega ) k c_{lt} D_{1} {\varvec{\eta }}, \\ \hat{I} \frac{{\text {d}}^{2} {\varvec{\eta }}}{{\text {d}} t^{2}} =\,&\mathrm {i}\theta k c_{lt} D_{1} \frac{{\text {d}} {\varvec{\xi }}}{{\text {d}} t} + \left( 2\mathrm {i}\omega \hat{I} + \theta L_{lt} \right) \frac{{\text {d}} {\varvec{\eta }}}{{\text {d}} t}\\&+ \mathrm {i}(1 - \mathrm {i}\theta \omega ) k c_{lt} D_{1} {\varvec{\xi }} + \left( \omega ^{2} \hat{I} + (1 - \mathrm {i}\theta \omega ) L_{lt} \right) {\varvec{\eta }}, \end{aligned} \end{aligned}$$

where \(\hat{I}\) is the matrix obtained from the identity matrix of order \(n+1\) after discarding its last row, \(c_{lt} = c_{l}^{2}-c_{t}^{2}\), and \(L_{tl} = c_{t}^{2} D_{2} - k^{2} c_{l}^{2} \hat{I}\) and \(L_{lt} = c_{l}^{2} D_{2} - k^{2} c_{t}^{2} \hat{I}\). For the boundary conditions (15) at \(y=1\), we have:

$$\begin{aligned} \begin{aligned} 0&= \theta c_{t}^{2} d_{1} \frac{{\text {d}} {\varvec{\xi }}}{{\text {d}} t} + \mathrm {i}\theta k c_{t}^{2} i_{1} \frac{{\text {d}} {\varvec{\eta }}}{{\text {d}} t} + (1 - \mathrm {i}\theta \omega ) c_{t}^{2} d_{1} {\varvec{\xi }} + \mathrm {i}(1 - \mathrm {i}\theta \omega ) k c_{t}^{2} i_{1} {\varvec{\eta }} - S, \\ 0&= \mathrm {i}\theta k \left( c_{l}^{2} - 2 c_{t}^{2}\right) i_{1} \frac{{\text {d}} {\varvec{\xi }}}{{\text {d}} t} + \theta c_{l}^{2} d_{1} \frac{{\text {d}} {\varvec{\eta }}}{{\text {d}} t} + \mathrm {i}(1 - \mathrm {i}\theta \omega ) k \left( c_{l}^{2} - 2 c_{t}^{2}\right) i_{1} {\varvec{\xi }} + (1 - \mathrm {i}\theta \omega ) c_{l}^{2} d_{1} {\varvec{\eta }} - P, \end{aligned} \end{aligned}$$

where \(i_{1}\) is the last row of the identity matrix of order \(n+1\).

Thus, Eqs. (13) approximated in space, taking into account the boundary conditions (14), (15), can be written as system (19) with matrices

$$\begin{aligned} M = \left[ \begin{array}{cc} \hat{I} &{}\quad 0\\ 0 &{}\quad 0 \\ 0 &{}\quad \hat{I}\\ 0 &{}\quad 0 \end{array} \right] , \; A = \left[ \begin{array}{cc} L_{tl} &{}\quad \mathrm {i}k c_{lt} D_{1}\\ c_{t}^{2} d_{1} &{}\quad \mathrm {i}k c_{t}^{2} i_{1}\\ \mathrm {i}k c_{lt} D_{1} &{}\quad L_{lt}\\ \mathrm {i}k \left( c_{l}^{2} - 2 c_{t}^{2}\right) i_{1} &{}\quad c_{l}^{2} d_{1} \end{array} \right] , \; f = \left[ \begin{array}{r} 0\\ -S\\ 0\\ -P \end{array} \right] . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, A.V., Demyanko, K.V. & Kulik, V.M. Setting of forced oscillations of viscoelastic coating. Continuum Mech. Thermodyn. 35, 1343–1352 (2023). https://doi.org/10.1007/s00161-022-01133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01133-4

Keywords

Navigation