Skip to main content
Log in

Matrix formalism used to describe the inertial properties in multibody dynamics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A matrix-based representation of the inertial characteristics with possible used in multibody dynamics is presented in the paper. The paper aims to develop a unitary formalism that will help to model multibody systems, for the purpose of kinematic and dynamic analysis. Properties of the inertia matrix due to the symmetry of this matrix are presented. The points with spherical and cylindrical symmetry are identified, which allow the easier writing of the equations of motion. The form of the inertia matrix from any body of a multibody system in the global reference system is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Shabana, A.: Dynamics of Multibody Systems, 5th edn. Cambridge University Press, Cambridge (2020)

    Book  Google Scholar 

  3. Nikravesh, P.E.: Planar Multibody Dynamics: Formulation, Programming with MATLAB® and Applications, 2nd edn. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  4. Amirouche, F.: Fundamentals of Multibody Dynamics: Theory and Applications. Birkhäuser, London (2006)

    MATH  Google Scholar 

  5. Pan, W., Haug, E.J.: Flexible multibody dynamic simulation using optimal lumped inertia matrices. Comput. Methods Appl. Mech. Eng. 173(1–2), 189–200 (1999). https://doi.org/10.1016/S0045-7825(98)00268-0

    Article  ADS  MATH  Google Scholar 

  6. Lai, H.J., Dopker, B.: The influence of lumped rotary inertia in flexible multibody dynamics. Mech. Struct. Mach. 18(2), 197–210 (1990). https://doi.org/10.1080/08905459008915666

    Article  Google Scholar 

  7. Gu, J.Z.: Free vibration of castellated beams with web shear and rotary inertia effects. Int. J. Struct. Stab. Dyn. 14(6), 1450011 (2014). https://doi.org/10.1142/S0219455414500114

    Article  MathSciNet  MATH  Google Scholar 

  8. Hizal, C., Catal, H.H.: Rotary inertia and higher modes effect on the dynamic response of timoshenko beams on two-parameter elastic foundation. Teknik Dergi 30(4), 9289–9308 (2019). https://doi.org/10.18400/tekderg.408772

    Article  Google Scholar 

  9. Hu, H., Ojetola, A., Hamidzadeh, H.: Coupled transverse and axial vibrations of cracked cantilever beams with roving mass and rotary inertia. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition-2010, vol. 8, PTS A AND B, pp. 21–28 (2012)

  10. Al-Ansary, M.D.: Flexural vibrations of rotating beams considering rotary inertia. Comput. Struct. 69(3), 321–328 (1998). https://doi.org/10.1016/S0045-7949(98)00134-5

    Article  MATH  Google Scholar 

  11. Sandel, A., Fayet, M.: Global inertia tensors expressed by 4 x 4 matrices: case of complex joints and pseudo-parameters. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 221(4), 527–539 (2007). https://doi.org/10.1243/14644193JMBD100

    Article  Google Scholar 

  12. Xu, X.M., Luo, J.H., Wu, Z.G.: Extending the modified inertia representation to constrained rigid multibody systems. J. Appl. Mech. Trans. ASME 87(1), 011010 (2020). https://doi.org/10.1115/1.4045001

    Article  ADS  Google Scholar 

  13. Vlase, S.: A method of eliminating Lagrangian-multipliers from the equation of motion of interconnected mechanical systems. J. Appl. Mech. Trans. ASME 54(1), 235–237 (1987). https://doi.org/10.1115/1.3172969

    Article  ADS  Google Scholar 

  14. Garcia de Jaln şi colab. Advances in Computational Multibody Systems, pp. 1–23 (2005)

  15. Pan, Y.J., Callejo, A., Bueno, J.L., Wehage, R.A., de Jalon, J.G.: Efficient and accurate modeling of rigid rods. Multibody Syst. Dyn. 40(1), 23–42 (2017). https://doi.org/10.1007/s11044-016-9520-0

    Article  MathSciNet  MATH  Google Scholar 

  16. Shah, S.V., Saha, S.K., Dutt, J.K.: New perspective towards decomposition of the generalized inertia matrix of multibody systems. Multibody Syst. Dyn. 43(2), 97–130 (2018). https://doi.org/10.1007/s11044-017-9581-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Itu, C., Bratu, P., Borza, P.N., Vlase, S., Lixandroiu, D.: Design and analysis of inertial platform insulation of the ELI-NP project of laser and gamma beam systems. Symmetry 12(12), 1972 (2020). https://doi.org/10.3390/sym12121972

    Article  Google Scholar 

  18. Zhang, X.M., Wang, Y.Q., Fang J.: Dynamic simulation of crank-connecting rod-piston mechanism of internal combustion engine based on virtual prototype technology. In: Electrical Information and Mechatronics and Applications, PTS 1 and 2. Applied Mechanics and Materials, vol. 143–144, p. 433 (2012). https://doi.org/10.4028/www.scientific.net/AMM.143-144.433

  19. Wang, Y.Q.P., Dehio, N., Kheddar, A.: On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts. IEEE Robot. Autom. Lett. 7(2), 3648–3655 (2022). https://doi.org/10.1109/LRA.2022.3145967

    Article  Google Scholar 

  20. Rucker, C., Wensing, P.M.: Smooth parameterization of rigid-body inertia. IEEE Robot. Autom. Lett. 7(2), 2771–2778 (2022). https://doi.org/10.1109/LRA.2022.3144517

    Article  Google Scholar 

  21. Itoh, T.D., Ishihara, K., Morimoto, J.: Implicit contact dynamics modeling with explicit inertia matrix representation for real-time, model-based control in physical environment. Neural Comput. 34(2), 360–377 (2022). https://doi.org/10.1162/neco_a_01465

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, S.N., Chen, X., Liu, L.L., Wang, Y.: Inertia indices and eigenvalue inequalities for Hermitian matrices. Linear Multilinear Algebra (2020). https://doi.org/10.1080/03081087.2020.1765957

    Article  MATH  Google Scholar 

  23. Zou, Y., Zhang, H., He, W.: Distributed consensus of second-order multi-vehicle systems with heterogeneous and unavailable inertia matrices. In: IEEE 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 293–297 (2020). https://doi.org/10.1109/YAC51587.2020.9337583

  24. Marin, M., Othman, M.I.A., Abbas, I.A.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)

    Article  Google Scholar 

  25. Hobiny, A., Alzahrani, F., Abbas, I., Marin, M.: The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4), 602 (2020)

    Article  Google Scholar 

  26. Jain, A., Rodriguez, G.: Multibody mass matrix sensitivity analysis using spatial operators. Int. J. Multiscale Comput. Eng. 1(2–3), 219–234 (2003). https://doi.org/10.1615/IntJMultCompEng.v1.i23.70

    Article  Google Scholar 

  27. Fayet, M., Sandel, A., Maiffredy, L.: Global inertia tensors used with pseudo parameters and complex joints-application in vehicle dynamics. In: Eleventh World Congress in Mechanism and Machine Science, vol. 1–5, pp. 2242–2247 (2004)

  28. Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997). https://doi.org/10.1023/A:1009773505418

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, X.M., Luo, J.H., Feng, X.G., Peng, H.J., Wu, Z.G.: A generalized inertia representation for rigid multibody systems in terms of natural coordinates. Mech. Mach. Theory 157, 104174 (2021). https://doi.org/10.1016/j.mechmachtheory.2020.104174

    Article  Google Scholar 

  30. Fayet, M., Pfister, F.: Analysis of multibody systems with indirect coordinates and global inertia tensors. Eur. J. Mech. A Solids 13(3), 431–457 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Beer, F.P., Johnston, E.R., Jr.: Vector Mechanics for Engineers: Statics and Dynamics. McGraw-Hill, New York (1984)

    Google Scholar 

  32. Hibbeler, R.C.: Engineering Mechanics: Statics and Dynamics, 15th edn. Pearson Books, Prentice Hall (2010)

    MATH  Google Scholar 

  33. Bhatti, M.M., et al.: Recent trends in computational fluid dynamics. Front. Phys. (2020). https://doi.org/10.3389/fphy.2020.593111

    Article  Google Scholar 

  34. Scutaru, M.L., Vlase, S., Marin, M., Modrea, A.: New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl. (2020). https://doi.org/10.1186/s13661-020-01401-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Bhatti, M.M., Chaudry, S.J., Khalique, M., Shahid, A., Fasheng, L.: Lie group analysis and robust computational approach to examine mass transport process using Jeffrey fluid model. Appl. Math. Comput. 421(15), 126936 (2022). https://doi.org/10.1016/j.amc.2022.126936

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlase, S., Marin, M., Öchsner, A. et al. Matrix formalism used to describe the inertial properties in multibody dynamics. Continuum Mech. Thermodyn. 34, 1267–1285 (2022). https://doi.org/10.1007/s00161-022-01120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01120-9

Keywords

Navigation