Skip to main content
Log in

Crystal plasticity modeling of polycrystalline Ni-base superalloy honeycombs under combined thermo-mechanical loading

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

To meet the ever-growing demands for the efficient operation of turbomachinery, a minimum clearance between the rotating and the stationary components is of great importance. A lack of controlling this clearance often leads to interface rubbing. As a result, thermo-mechanical loads arise that can critically damage both components. Maintaining operational reliability and high efficiency requires seal systems that can tolerate rubbing. Honeycomb labyrinth seals can fulfill this task. In this contribution, we present a three-dimensional microstructure-based simulation approach considering the periodic unit cell of a polycrystalline Ni-base superalloy (Hastelloy X) honeycomb structure. Different honeycomb geometries are investigated, and various loading conditions are applied to simulate the thermo-mechanical behavior of the honeycomb structure during rubbing. The problem is solved in a finite element framework, and the deformation behavior is described by a crystal plasticity model accounting for microstructure attributes of the material. To calibrate the material model, numerical simulations on a representative volume element discretized with a realistic three-dimensional periodic mesh are carried out. The overall thermo-mechanical response of the honeycomb structure as well as the development of local field quantities is investigated. The study reveals that large contact areas seem to be very critical for the initiation of premature damage of the honeycomb structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abotula, S., Shukla, A., Chona, R.: Dynamic constitutive behavior of Hastelloy X under thermo-mechanical loads. J. Mater. Sci. 46(14), 4971–4979 (2011)

    Article  ADS  Google Scholar 

  2. Aghaie-Khafri, M., Golarzi, N.: Dynamic and metadynamic recrystallization of Hastelloy X superalloy. J. Mater. Sci. 43(10), 3717–3724 (2008)

    Article  ADS  Google Scholar 

  3. Aghaie-Khafri, M., Golarzi, N.: Forming behavior and workability of Hastelloy X superalloy during hot deformation. Mater. Sci. Eng. A 486, 641–647 (2008)

    Article  Google Scholar 

  4. Barba, D., Alabort, E., Garcia-Gonzalez, D., Moverare, J., Reed, R., Jerusalem, A.: A thermodynamically consistent constitutive model for diffusion-assisted plasticity in Ni-based superalloys. Int. J. Plast. 105, 74–98 (2018)

    Article  Google Scholar 

  5. Böhm, H.: A short introduction to basic aspects of continuum micromechanics. ILSB Report, Vienna University of Technology 206 (1998)

  6. Canistraro, H.A., Jordan, E.H., Shixiang, S., Favrow, L.H., Reed, F.A.: Elastic constants of single crystal Hastelloy X at elevated temperatures. J. Eng. Mater. Technol. 120(3), 242–247 (1998)

    Article  Google Scholar 

  7. Dassault Systèmes: Abaqus 6.13 Analysis User’s Guide (2013)

  8. Dick, T., Cailletaud, G.: Fretting modelling with a crystal plasticity model of Ti6Al4V. Comput. Mater. Sci. 38(1), 113–125 (2006)

    Article  Google Scholar 

  9. Farukh, F., Zhao, L., Jiang, R., Reed, P., Proprentner, D., Shollock, B.: Realistic microstructure-based modelling of cyclic deformation and crack growth using crystal plasticity. Comput. Mater. Sci. 111, 395–405 (2016)

    Article  Google Scholar 

  10. Fillafer, A., Krempaszky, C., Werner, E.: On strain partitioning and micro-damage behavior of dual-phase steels. Mater. Sci. Eng. A 614, 180–192 (2014)

    Article  Google Scholar 

  11. Frederick, C., Armstrong, P.: A mathematical representation of the multiaxial bauschinger effect. G.E.G.B. Report RD/B/N 731 (1966)

  12. Fritzen, F., Böhlke, T., Schnack, E.: Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Comput. Mech. 43, 701–713 (2009)

    Article  MATH  Google Scholar 

  13. Fromm, B.S., Chang, K., McDowell, D.L., Chen, L.Q., Garmestani, H.: Linking phase-field and finite-element modeling for process-structure-property relations of a Ni-base superalloy. Acta Mater. 60, 5984–5999 (2012)

    Article  Google Scholar 

  14. Ghosh, S., Weber, G., Keshavarz, S.: Multiscale modeling of polycrystalline nickel-based superalloys accounting for subgrain microstructures. Mech. Res. Commun. 78, 34–46 (2016)

    Article  Google Scholar 

  15. Goh, C.H., McDowell, D.L., Neu, R.W.: Characteristics of plastic deformation field in polycrystalline fretting contacts. Int. J. Fatigue 25(9–11), 1047–1058 (2003)

    Article  Google Scholar 

  16. Goh, C.H., McDowell, D.L., Neu, R.W.: Influence of microstructure in partial-slip fretting contacts based upon two-dimensional crystal plasticity simulations. J. Tribol. 128(4), 735–744 (2006)

    Article  Google Scholar 

  17. Goh, C.H., McDowell, D.L., Neu, R.W.: Plasticity in polycrystalline fretting fatigue contacts. J. Mech. Phys. Solids 54(2), 340–367 (2006)

    Article  ADS  MATH  Google Scholar 

  18. Goh, C.H., Neu, R.W., McDowell, D.L.: Crystallographic plasticity in fretting of Ti–6AL–4V. Int. J. Plast. 19(10), 1627–1650 (2003)

    Article  MATH  Google Scholar 

  19. Haynes International, I.: Hastelloy X alloy (UNS N06002). High-temperature alloys (1997)

  20. Hennessey, C., Castelluccio, G.M., McDowell, D.L.: Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075–T6. Mater. Sci. Eng. A 687, 241–248 (2017)

    Article  Google Scholar 

  21. Jordan, E.H., Shi, S., Walker, K.P.: The viscoplastic behavior of Hastelloy-X single crystal. Int. J. Plast. 9(1), 119–139 (1993)

    Article  Google Scholar 

  22. Keshavarz, S., Ghosh, S.: Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater. 61, 6549–6561 (2013)

    Article  Google Scholar 

  23. Kouznetsova, V.: Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, TU Eindhoven (2002)

  24. Kumar, R., Wang, A., McDowell, D.L.: Effects of microstructure variability on intrinsic fatigue resistance of nickel-base superalloys - a computational micromechanics approach. Int. J. Fract. 137, 173–210 (2006)

    Article  MATH  Google Scholar 

  25. Lin, B., Zhao, L., Tong, J., Christ, H.: Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature. Mater. Sci. Eng. A 527(15), 3581–3587 (2010)

    Article  Google Scholar 

  26. Meier, F.: Influence of the aluminum-microstructure on the damage behavior of integrated circuits. Ph.D. thesis, Technical University of Munich (2017)

  27. Meier, F., Schwarz, C., Werner, E.: Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits. Comput. Mater. Sci. 94, 122–131 (2014)

    Article  Google Scholar 

  28. Mohr, D.: Multi-scale finite-strain plasticity model for stable metallic honeycombs incorporating microstructural evolution. Int. J. Plast. 22, 1899–1923 (2006)

    Article  MATH  Google Scholar 

  29. Mohr, D., Doyoyo, M.: Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb. Int. J. Solids Struct. 41, 3353–3377 (2004)

    Article  MATH  Google Scholar 

  30. Mohr, D., Doyoyo, M.: Large plastic deformation of metallic honeycomb: orthotropic rate-independent constitutive model. Int. J. Solids Struct. 41, 4435–4456 (2004)

    Article  MATH  Google Scholar 

  31. Musinski, W.D., McDowell, D.L.: Microstructure-sensitive probabilistic modeling of HCF crack initiation and early crack growth in Ni-base superalloy IN100 notched components. Int. J. Fatigue 37, 41–53 (2011)

    Article  Google Scholar 

  32. Musinski, W.D., McDowell, D.L.: On the eigenstrain application of shot-peened residual stresses within a crystal plasticity framework: Application to Ni-base superalloy specimens. Int. J. Mech. Sci. 100, 195–208 (2015)

    Article  Google Scholar 

  33. Nygards, M., Gudmundson, P.: Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two-phase steel. Comput. Mater. Sci. 24, 513–519 (2002)

    Article  Google Scholar 

  34. Przybyla, C.P., McDowell, D.L.: Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100. Int. J. Plast. 26, 372–394 (26)

  35. Quey, R., Dawson, P., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)

    Article  ADS  MATH  Google Scholar 

  36. Roters, F., Diehl, M., Shanthraj, P., Eisenlohr, P., Reuber, C., L.Wong, S., Ma, D., Jia, N., Kok, P., Fujita, N., Ebrahimi, A., Hochrainer, T., Grilli, N., Janssens, K., Stricker, M., Weygand, D., Meier, F., Werner, E., Fabritius, H.O., Nikolov, S., Friak, M., Raabe, D.: Damask - the Düsseldorf advanced material simulation kit for modelling multi-physics crystal plasticity, damage and thermal phenomena from the single crystal up to the component scale. Comput. Mater. Sci. (in press) (2018)

  37. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: therory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010)

    Article  Google Scholar 

  38. Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D., Diehl, M., Raabe, D.: Damask: The Düsseldorf advanced material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)

    Article  Google Scholar 

  39. Rycroft, C.H.: Voro++: a three-dimensional Voronoi cell library in C++. Chaos 19, 041–111 (2009)

    Article  Google Scholar 

  40. Sakthivel, T., Laha, K., Nandagopal, M., Chandravathi, K.S., Parameswaran, P., Selvi, S.P., Mathew, M., Mannan, S.K.: Effect of temperature and strain rate on serrated flow behaviour of Hastelloy X. Mater. Sci. Eng. A 534, 580–587 (2012)

    Article  Google Scholar 

  41. Shahba, A., Ghosh, S.: Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: a unified constitutive model and flow rule. Int. J. Plast. 87, 48–68 (2016)

    Article  Google Scholar 

  42. Shenoy, M.M., Gordon, A.P., McDowell, D.L., Neu, R.W.: Thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy. J. Eng. Mater. Technol. 127, 325–336 (2005)

    Article  Google Scholar 

  43. Shi, S., Jordan, E.H., Walker, K.P.: Self-consistent constitutive modeling and testing of polycrystalline Hastelloy-X. Int. J. Solids Struct. 29(21), 2623–2638 (1992)

    Article  Google Scholar 

  44. Song, J.E., McDowell, D.L.: Grain scale crystal plasticity model with slip and microtwinning for a third generation Ni-base disk alloy. Superalloys 2012, 159–166 (2012)

    Article  Google Scholar 

  45. Taxer, T., Schwarz, C., Smarsly, W., Werner, E.: A finite element approach to study the influence of cast pores on the mechanical properties of the Ni-base alloy MAR-M247. Mater. Sci. Eng. A 575, 144–151 (2013)

    Article  Google Scholar 

  46. Varshni, Y.P.: Temperature dependence of the elastic constants. Phys. Rev. B 2(10), 3952–3958 (1970)

    Article  ADS  Google Scholar 

  47. Wang, A., McDowell, D.L.: Yield surfaces of various periodic metal honeycombs at intermediate relative density. Int. J. Plast. 21(2), 285–320 (2005)

    Article  MATH  Google Scholar 

  48. Werner, E., Wesenjak, R., Fillafer, A., Meier, F., Krempaszky, C.: Microstructure-based modelling of multiphase materials and complex structures. Contin. Mech. Thermodyn. 28(5), 1325–1346 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Ye, C., Chen, J., Xu, M., Wei, X., Lu, H.: Multi-scale simulation of nanoindentation on cast Inconel 718 and NbC precipitate for mechanical properties prediction. Mater. Sci. Eng. A 662, 385–394 (2016)

    Article  Google Scholar 

  50. Zhang, M., McDowell, D.L., Neu, R.W.: Microstructure sensitivity of fretting fatigue based on computational crystal plasticity. Tribol. Int. 42, 1286–1296 (2009)

    Article  Google Scholar 

  51. Zhang, M., Neu, R.W., McDowell, D.L.: Microstructure-sensitive modeling: application to fretting contacts. Int. J. Fatigue 31, 1397–1406 (2009)

    Article  Google Scholar 

  52. Zhang, T., Jiang, J., Britton, B., Shollock, B., Dunne, F.: Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue. Proc. Math. Phys. Eng. Sci. 472, 1–25 (2016)

    Google Scholar 

  53. Zhang, X., Oskay, C.: Polycrystal plasticity modeling of nickel-based superalloy IN 617 subjected to cyclic loading at high temperature. Modell. Simul. Mater. Sci. Eng. 24, 1–27 (2016)

    Google Scholar 

Download references

Acknowledgements

This work is part of the research project WE 2351/14–1, funded by the DFG (Deutsche Forschungsgemeinschaft). We thank the Max Planck Institut für Eisenforschung in Düsseldorf for providing the simulation kit DAMASK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Fischer.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, T., Werner, E., Ulan kyzy, S. et al. Crystal plasticity modeling of polycrystalline Ni-base superalloy honeycombs under combined thermo-mechanical loading. Continuum Mech. Thermodyn. 31, 703–713 (2019). https://doi.org/10.1007/s00161-018-0721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0721-z

Keywords

Navigation