Skip to main content
Log in

Constitutive modeling of randomly oriented electrospun nanofibrous membranes

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, a simple phenomenological model describing the macroscopic mechanical response of electrospun nanofibrous structures is proposed. Motivated by the experimental observation, the model development starts from the description of membrane response at fiber scale in order to capture individual fiber response and irreversible inter-fiber interactions using hyperelastic and large strain elasto-plastic frameworks, respectively. The macroscopic response is subsequently obtained by integrating the fiber responses in all possible fiber orientations. The efficiency of the proposed model is assessed using experimental data of PVDF electrospun nanofibrous membranes. It is found that the model is qualitatively in good agreement with uniaxial monotonic and cyclic tensile loading tests. Two other deformation modes, i.e., equibiaxial extension and pure shear (planar extension), are simulated to further evaluate the model responses. Finally, the deformation-induced fiber re-orientation is investigated for different modes of deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., Matsuura, T.: Electrospun nanofibrous filtration membrane. J. Membr. Sci. 281(1), 581–586 (2006)

    Article  Google Scholar 

  2. Wang, R., Liu, Y., Li, B., Hsiao, B.S., Chu, B.: Electrospun nanofibrous membranes for high flux microfiltration. J. Membr. Sci. 392, 167–174 (2012)

    Article  Google Scholar 

  3. Liao, Y., Wang, R., Tian, M., Qiu, C., Fane, A.G.: Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 425, 30–39 (2013)

    Article  Google Scholar 

  4. Dehghan, S.F., Golbabaei, F., Maddah, B., Latifi, M., Pezeshk, H., Hasanzadeh, M., Akbar-Khanzadeh, F.: Optimization of electrospinning parameters for polyacrylonitrile-mgo nanofibers applied in air filtration. J. Air Waste Manag. Assoc. 66(9), 912–921 (2016)

    Article  Google Scholar 

  5. Nerurkar, N.L., Elliott, D.M., Mauck, R.L.: Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J. Orthopaed. Res. 25(8), 1018–1028 (2007)

    Article  Google Scholar 

  6. Pillay, V., Dott, C., Choonara, Y.E., Tyagi, C., Tomar, L., Kumar, P., du Toit, L.C., Ndesendo, V.M.K.: A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013, 22 (2013)

    Article  Google Scholar 

  7. Sill, T.J., von Recum, H.A.: Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)

    Article  Google Scholar 

  8. Jiang, T., Carbone, E.J., Lo, K.W.-H., Laurencin, C.T.: Electrospinning of polymer nanofibers for tissue regeneration. Prog. Polym. Sci. 46, 1–24 (2015)

    Article  Google Scholar 

  9. Yang, G.-Z., Li, J.-J., Yu, D.-G., He, M.-F., Yang, J.-H., Williams, G.R.: Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater. 53, 233–241 (2017)

    Article  Google Scholar 

  10. Zamani, M., Prabhakaran, M.P., Ramakrishna, S.: Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomed. 8(1), 2997–3017 (2013)

    Google Scholar 

  11. Deitzel, J., Kosik, W., McKnight, S., Tan, N.B., DeSimone, J.M., Crette, S.: Electrospinning of polymer nanofibers with specific surface chemistry. Polymer 43(3), 1025–1029 (2002)

    Article  Google Scholar 

  12. Gao, K., Hu, X., Dai, C., Yi, T.: Crystal structures of electrospun pvdf membranes and its separator application for rechargeable lithium metal cells. Mater. Sci. Eng. B 131(1), 100–105 (2006)

    Article  Google Scholar 

  13. Cozza, E.S., Monticelli, O., Marsano, E., Cebe, P.: On the electrospinning of PVDF: influence of the experimental conditions on the nanofiber properties. Polym. Int. 62(1), 41–48 (2013)

    Article  Google Scholar 

  14. Khanlou, H.M., Sadollah, A., Ang, B.C., Kim, J.H., Talebian, S., Ghadimi, A.: Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput. Appl. 25(3–4), 767–777 (2014)

    Article  Google Scholar 

  15. Cai, X., Zhu, P., Lu, X., Liu, Y., Lei, T., Sun, D.: Electrospinning of very long and highly aligned fibers. J. Mater. Sci. 52(24), 14004–14010 (2017)

    Article  Google Scholar 

  16. Lee, J.J.L., Ang, B.C., Andriyana, A., Shariful, M.I., Amalina, M.: Fabrication of PMMA/zeolite nanofibrous membrane through electrospinning and its adsorption behavior. J. Appl. Polym. Sci. 134(6), 1–13 (2017)

    Article  Google Scholar 

  17. Jearanaisilawong, P.: A continuum model for needlepunched nonwoven fabrics. Ph.D. Thesis, Massachusetts Institute of Technology (2008)

  18. King, M., Jearanaisilawong, P., Socrate, S.: A continuum constitutive model for the mechanical behavior of woven fabrics. Int. J. Solids Struct. 42(13), 3867–3896 (2005)

    Article  MATH  Google Scholar 

  19. Nadler, B., Papadopoulos, P., Steigmann, D.J.: Multiscale constitutive modeling and numerical simulation of fabric material. Int. J. Solids Struct. 43(2), 206–221 (2006)

    Article  MATH  Google Scholar 

  20. Raina, A., Linder, C.: A homogenization approach for nonwoven materials based on fiber undulations and reorientation. J. Mech. Phys. Solids 65, 12–34 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ridruejo, A., González, C., LLorca, J.: A constitutive model for the in-plane mechanical behavior of nonwoven fabrics. Int. J. Solids Struct. 49(17), 2215–2229 (2012)

    Article  Google Scholar 

  22. Shim, V., Tan, V., Tay, T.: Modelling deformation and damage characteristics of woven fabric under small projectile impact. Int. J. Impact Eng. 16(4), 585–605 (1995)

    Article  Google Scholar 

  23. Wei, X., Xia, Z., Wong, S.-C., Baji, A.: Modelling of mechanical properties of electrospun nanofibre network. Int. J. Exp. Comput. Biomech. 1(1), 45–57 (2009)

    Article  Google Scholar 

  24. Dupaix, R.B., Hosmer, J.E.D.: Mechanical characterization and finite strain constitutive modeling of electrospun polycaprolactone under cyclic loading. Int. J. Struct. Changes Sol. 2(1), 9–17 (2010)

    Google Scholar 

  25. Silberstein, M.N., Pai, C.-L., Rutledge, G.C., Boyce, M.C.: Elastic-plastic behavior of non-woven fibrous mats. J. Mech. Phys. Solids 60(2), 295–318 (2012)

    Article  ADS  MATH  Google Scholar 

  26. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  ADS  MATH  Google Scholar 

  27. Planas, J., Guinea, G., Elices, M.: Constitutive model for fiber-reinforced materials with deformable matrices. Phys. Rev. E 76(4), 041903 (2007)

    Article  ADS  Google Scholar 

  28. Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)

    Article  Google Scholar 

  29. Greiner, A., Wendorff, J.H.: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)

    Article  Google Scholar 

  30. Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., Chen, P.: Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 70(5), 703–718 (2010)

    Article  Google Scholar 

  31. Huang, Z.-M., Zhang, Y., Ramakrishna, S., Lim, C.: Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45(15), 5361–5368 (2004)

    Article  Google Scholar 

  32. Molnar, K., Vas, L.M., Czigany, T.: Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat. Compos. Part B Eng. 43(1), 15–21 (2012)

    Article  Google Scholar 

  33. Wong, D., Andriyana, A., Ang, B.C., Verron, E.: Surface morphology and mechanical response of randomly oriented electrospun nanofibrous membrane. Polym. Test. 53, 108–115 (2016)

    Article  Google Scholar 

  34. Verron, E.: Questioning numerical integration methods for microsphere (and microplane) constitutive equations. Mech. Mater. 89, 216–228 (2015)

    Article  Google Scholar 

  35. Simo, J.C., Hughes, T.J.: Computational Inelasticity, vol. 7. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andri Andriyana.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, D., Verron, E., Andriyana, A. et al. Constitutive modeling of randomly oriented electrospun nanofibrous membranes. Continuum Mech. Thermodyn. 31, 317–329 (2019). https://doi.org/10.1007/s00161-018-0687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0687-x

Keywords

Navigation