Skip to main content

Advertisement

Log in

Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper presents a non-classical continuum theory in Lagrangian description for solids in which the conservation and the balance laws are derived by incorporating both the internal rotations arising from the Jacobian of deformation and the rotations of Cosserat theories at a material point. In particular, in this non-classical continuum theory, we have (i) the usual displacements \(( \pmb {\varvec{u }})\) and (ii) three internal rotations \(({}_i \pmb {\varvec{{\varTheta } }})\) about the axes of a triad whose axes are parallel to the x-frame arising from the Jacobian of deformation (which are completely defined by the skew-symmetric part of the Jacobian of deformation), and (iii) three additional rotations \(({}_e \pmb {\varvec{{\varTheta } }})\) about the axes of the same triad located at each material point as additional three degrees of freedom referred to as Cosserat rotations. This gives rise to \( \pmb {\varvec{u }}\) and \({}_e \pmb {\varvec{{\varTheta } }}\) as six degrees of freedom at a material point. The internal rotations \(({}_i \pmb {\varvec{{\varTheta } }})\), often neglected in classical continuum mechanics, exist in all deforming solid continua as these are due to Jacobian of deformation. When the internal rotations \({}_i \pmb {\varvec{{\varTheta } }}\) are resisted by the deforming matter, conjugate moment tensor arises that together with \({}_i \pmb {\varvec{{\varTheta } }}\) may result in energy storage and/or dissipation, which must be accounted for in the conservation and the balance laws. The Cosserat rotations \({}_e \pmb {\varvec{{\varTheta } }}\) also result in conjugate moment tensor which, together with \({}_e \pmb {\varvec{{\varTheta } }}\), may also result in energy storage and/or dissipation. The main focus of the paper is a consistent derivation of conservation and balance laws that incorporate aforementioned physics and associated constitutive theories for thermoelastic solids. The mathematical model derived here has closure, and the constitutive theories derived using two alternate approaches are in agreement with each other as well as with the condition resulting from the entropy inequality. Material coefficients introduced in the constitutive theories are clearly defined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Voigt, W.: Theoretische Studien über die Wissenschaften zu Elastizitätsverhältnisse der Krystalle. Abhandl. Ges. Göttingen 34, (1887)

  2. Voigt, W.: Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen. Göttingen Abhandl, pp. 72–79 (1894)

  3. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)

    MATH  Google Scholar 

  4. Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandl. Braunschweig. Wiss. Ges. 10, 195–213 (1958)

    MATH  Google Scholar 

  5. Grioli, G.: Elasticità Asimmetrica. Ann. Mat. 50(1), 389–417 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Solid State Sov. Phys. 2, 1272–1281 (1961)

    MathSciNet  Google Scholar 

  7. Schäfer, H.: Versuch einer Elastizitätstheorie des Zweidimensionalen Ebenen Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, pp. 277–292 (1962)

  8. Truesdell, C.A., Toupin, R.A.: The classical field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. 3. Springer, Berlin (1960)

    Google Scholar 

  9. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Ser. B Koninklijke Nederlandse Akademie van Wetenschappen 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  12. Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, London (1962)

    Google Scholar 

  13. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—II. Int. J. Eng. Sci. 2(2), 389–404 (1964)

    MATH  Google Scholar 

  15. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eringen, A.C.: Mechanics of micromorphic materials. In: Gortler, H. (ed.) Proceeding of 11th international congress of applied mechanics, Munich, pp. 131–138. Springer, Berlin (1964)

    Google Scholar 

  17. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mindlin, R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1, 265–271 (1965)

    Article  Google Scholar 

  20. Brand, M., Rubin, M.B.: A constrained theory of a Cosserat point for the numerical solution of dynamic problems of non-linear elastic rods with rigid cross-sections. Int. J. Non-Linear Mech. 42, 216–232 (2007)

    Article  ADS  Google Scholar 

  21. Cao, D.Q., Tucker, R.W.: Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation. Int. J. Solids Struct. 45, 460–477 (2008)

    Article  MATH  Google Scholar 

  22. Riahi, A., Curran, J.H.: Full 3D finite element Cosserat formulation with application in layered structures. Appl. Math. Model. 33, 3450–3464 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sansour, C.: A unified concept of elastic viscoplastic Cosserat and micromorphic continua. J. Phys. IV France 8, 341–348 (1998)

    Article  Google Scholar 

  24. Sansour, C., Skatulla, S.: A strain gradient generalized continuum approach for modelling elastic scale effects. Comput. Methods Appl. Mech. Eng. 198, 1401–1412 (2009)

    Article  ADS  MATH  Google Scholar 

  25. Sansour, C., Skatulla, S., Zbib, H.: A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)

    Article  MATH  Google Scholar 

  26. Varygina, M.P., Sadovskaya, O.V., Sadovskii, V.M.: Resonant properties of moment Cosserat continuum. J. Appl. Mech. Tech. Phys. 51(3), 405–413 (2010)

    Article  ADS  MATH  Google Scholar 

  27. Nikabadze, M.U.: Relation between the stress and couple-stress tensors in the microcontinuum theory of elasticity. Moscow Univ. Mech. Bull. 66(6), 141–143 (2011)

    Article  MathSciNet  Google Scholar 

  28. Ieşan, D.: Deformation of porous Cosserat elastic bars. Int. J. Solids Struct. 48, 573–583 (2011)

    Article  MATH  Google Scholar 

  29. Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to the Cosserat rod theory—part 1: static equilibria. Int. J. Numer. Methods Eng. 85, 31–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Alonso-Marroquín, F.: Static equations of the Cosserat continuum derived from intra-granular stresses. Granul. Matter 13, 189–196 (2011)

    Article  Google Scholar 

  31. Chiriţă, S., Ghiba, I.D.: Rayleigh waves in Cosserat elastic materials. Int. J. Eng. Sci. 54, 117–127 (2012)

    MathSciNet  Google Scholar 

  32. Cao, D.Q., Song, M.T., Tucker, R.W., Zhu, W.D., Liu, D.S., Huang, W.H.: Dynamic equations of thermoelastic Cosserat rods. Commun. Nonlinear Sci. Numer. Simul. 18, 1880–1887 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Addessi, D., De Bellis, M.L., Sacco, E.: Micromechanical analysis of heterogeneous materials subjected to overall Cosserat strains. Mech. Res. Commun. 54, 27–34 (2013)

    Article  Google Scholar 

  34. Cialdea, A., Dolce, E., Malaspina, A., Nanni, V.: On an integral equation of the first kind arising in the theory of Cosserat. Int. J. Math. 24(5), 537–547 (2013)

  35. Skatull, S., Sansour, C.: A formulation of a Cosserat-like continuum with multiple scale effects. Comput. Mater. Sci. 67, 113–122 (2013)

    Article  Google Scholar 

  36. Liu, Q.: Hill’s lemma for the average-field theory of Cosserat continuum. Acta Mech. 224, 851–866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Del Piero, G.: A rational approach to Cosserat continua, with application to plate and beam theories. Mech. Res. Commun. 58, 97–104 (2014)

    Article  Google Scholar 

  38. Genovese, D.: A two-director Cosserat rod model using unconstrained quaternions. Eur. J. Mech. A/Solids 43, 44–57 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  39. Huang, W., Sloan, S.W., Sheng, D.: Analysis of plane Couette shear test of granular media in a Cosserat continuum approach. Mech. Mater. 69, 106–115 (2014)

    Article  Google Scholar 

  40. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for solid continua. J. Therm. Eng. 1(1), 1–13 (2015)

    Article  Google Scholar 

  41. Surana, K.S., Reddy, J.N., Nunez, D., Powell, M.J.: A polar continuum theory for solid continua. Int. J. Eng. Res. Ind. Appl. 8(2), 77–106 (2015)

    Google Scholar 

  42. Surana, K.S., Powell, M.J., Reddy, J.N.: Constitutive theories for internal polar thermoelastic solid continua. J. Pure Appl. Math. Adv. Appl. 14(2), 89–150 (2015)

    Article  Google Scholar 

  43. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for fluent continua. J. Therm. Eng. 1(1), 14–30 (2015)

    Google Scholar 

  44. Surana, K.S., Powell, M.J., Reddy, J.N.: Ordered rate constitutive theories for internal polar thermofluids. Int. J. Math. Sci. Eng. Appl. 9(3), 51–116 (2015)

    Google Scholar 

  45. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  46. Surana, K.S.: Advanced Mechanics of Continua. CRC/Taylor and Francis, Boca Raton, FL (2015)

    MATH  Google Scholar 

  47. Eringen, A.C.: Mechanics of Continua. Wiley, London (1967)

    MATH  Google Scholar 

  48. Prager, W.: Strain hardening under combined stresses. J. Appl. Phys. 16, 837–840 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  49. Reiner, M.: A mathematical theory of dilatancy. Am. J. Math. 67, 350–362 (1945)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Todd, J.A.: Ternary quadratic types. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 399–456 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Rivlin, R.S., Ericksen, J.L.: Stress–deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  52. Rivlin, R.S.: Further remarks on the stress–deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 681–702 (1955)

    MathSciNet  MATH  Google Scholar 

  53. Wang, C.C.: On representations for isotropic functions, part I. Arch. Ration. Mech. Anal. 33, 249 (1969)

    Article  Google Scholar 

  54. Wang, C.C.: On representations for isotropic functions, part II. Arch. Ration. Mech. Anal. 33, 268 (1969)

    Article  Google Scholar 

  55. Wang, C.C.: A new representation theorem for isotropic functions, part I and part II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  Google Scholar 

  56. Wang, C.C.: Corrigendum to ‘representations for isotropic functions’. Arch. Ration. Mech. Anal. 43, 392–395 (1971)

    Article  Google Scholar 

  57. Smith, G.F.: On a fundamental error in two papers of C.C. Wang, ‘on representations for isotropic functions, part I and part II’. Arch. Ration. Mech. Anal. 36, 161–165 (1970)

    Article  MATH  Google Scholar 

  58. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  59. Spencer, A.J.M., Rivlin, R.S.: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  60. Spencer, A.J.M., Rivlin, R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  61. Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Treatise on Continuum Physics. I. Academic Press, London (1971)

    Google Scholar 

  62. Boehler, J.P.: On irreducible representations for isotropic scalar functions. J. Appl. Math. Mech. 57, 323–327 (1977)

    MathSciNet  MATH  Google Scholar 

  63. Zheng, Q.S.: On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int. J. Eng. Sci. 31, 1013–1024 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zheng, Q.S.: On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int. J. Eng. Sci. 31, 1399–1453 (1993)

    Article  MATH  Google Scholar 

  65. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  66. Srinivasa, A.R., Reddy, J.N.: A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Kármán plates and beams. J. Mech. Phys. Solids 61(3), 873–885 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  67. Segerstad, P.H., Toll, S., Larsson, R.: A micropolar theory for the finite elasticity of open-cell cellular solids. Proc. R. Soc. A 465, 843–865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Mindlin, R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  69. Eringen, A.C.: Theory of micropolar elasticity. In: H. Liebowitz (ed.) Fracture, pp. 621–729 (1968)

  70. Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)

    Article  Google Scholar 

  71. Nakamura, S., Lakes, R.S.: Finite element analysis of Saint-Venant end effects in micropolar elastic solids. Eng. Comput. 12, 571–587 (1995)

    Article  MATH  Google Scholar 

  72. Nakamura, S., Lakes, R.S.: Finite element analysis of stress concentration around a blunt crack in a Cosserat elastic solid. Comput. Methods Appl. Mech. Eng. 66, 257–266 (1988)

    Article  ADS  MATH  Google Scholar 

  73. Lakes, R.S., Benedict, R.L.: Noncentrosymmetry in micropolar elasticity. Int. J. Eng. Sci. 20(10), 1161–1167 (1982)

    Article  MATH  Google Scholar 

  74. Lakes, R.S., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section: theory and experiment. J. Appl. Mech. 82(9), 091002 (2015)

  75. Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross-section. Int. J. Solids Struct. 23(4), 485–503 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Joy, A.D. & Reddy, J.N. Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories. Continuum Mech. Thermodyn. 29, 665–698 (2017). https://doi.org/10.1007/s00161-017-0554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0554-1

Keywords

Navigation