Skip to main content
Log in

Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin–Murdoch model of material surfaces

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The objective of this work is to present an approach allowing for inclusion of the complete Gurtin–Murdoch material surface equations in methods leading to closed-form formulas defining effective properties of particle-reinforced nanocomposites. Considering that all previous developments of the closed-form formulas for effective properties employ only some parts of the Gurtin–Murdoch model, its complete inclusion constitutes the main focus of this work. To this end, the recently introduced new notion of the energy-equivalent inhomogeneity is generalized to precisely include all terms of the model. The crucial aspect of that generalization is the identification of the energy associated with the last term of the Gurtin–Murdoch equation, i.e., with the surface gradient of displacements. With the help of that definition, the real nanoparticle and its surface possessing its own distinct elastic properties and residual stresses are replaced by an energy-equivalent inhomogeneity with properties incorporating all surface effects. Such equivalent inhomogeneity can then be used in combination with any existing homogenization method. In this work, the method of conditional moments is used to analyze composites with randomly dispersed spherical nanoparticles. Closed-form expressions for effective moduli are derived for both bulk and shear moduli. As numerical examples, nanoporous aluminum is investigated. The normalized bulk and shear moduli of nanoporous aluminum as a function of residual stresses are analyzed and evaluated in the context of other theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Mechanical properties of materials considering surface effects. In: Cocks, A., Wang, J. (eds.) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, IUTAM Book Series (Closed), vol. 31, pp. 105–115. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  2. Brisard, S., Dormieux, L., Kondo, D.: Hashin–Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inhomogeneities and interface effects. Comput. Mater. Sci. 48(3), 589–596 (2010)

    Article  Google Scholar 

  3. Budiansky, B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solds. 13(4), 223–227 (1965)

    Article  ADS  Google Scholar 

  4. Chen, T., Dvorak, G.J., Yu, C.C.: Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188, 39–54 (2007)

    Article  MATH  Google Scholar 

  5. Christensen, R.M.: Mechanics of Composite Materials. Krieger, New York (1991)

    Google Scholar 

  6. Dong, C.Y., Zhang, G.L.: Boundary element analysis of three dimensional nanoscale inhomogeneities. Int. J. Solids Struct. 50, 201–208 (2013)

    Article  Google Scholar 

  7. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Duan, H.L., Yi, X., Huang, Z.P., Wang, J.: A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part I—Theoretical framework. Mech. Mater. 39, 81–93 (2007)

    Article  Google Scholar 

  9. Eshelby, J.D.: The determination of the elastic fields of an ellipsoidal inclusions, and related problems. Proc. R. Soc. A 241, 376–396 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Green, A.E., Zerna, W.: Theoretical Elasticity, 2nd edn. Dover, Mineola (2002)

    MATH  Google Scholar 

  11. Gu, S.T., Liu, J.T., He, Q.C.: Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities. Int. J. Solids Struct. 51, 2283–2296 (2014)

    Article  Google Scholar 

  12. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  14. Gurtin, M.E., Markenscoff, X., Thurston, R.N.: Effect of surface stress on the natural frequency of thin crystals. Appl. Phys. Lett. 29, 529 (1976)

    Article  ADS  Google Scholar 

  15. Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  ADS  Google Scholar 

  16. Hashin, Z.: The elastic moduli of heterogeneous materials. Office of Naval Research, Technical report no 9, Sept. 1961

  17. Hashin, Z.: The spherical inclusion with imperfect interface. J. Appl. Mech. 58, 444–449 (1991)

    Article  ADS  Google Scholar 

  18. Hashin, Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50, 2509–2537 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. He, L.H., Li, Z.R.: Impact of surface stress on stress concentration. Int. J. Solids Struct. 43, 6208–6219 (2006)

    Article  MATH  Google Scholar 

  20. Huang, Z.P., Wang, J.: A theory of hyperelasticity of multi-phase media with surface/interface effect. Acta Mech. 182, 195–210 (2006)

    Article  MATH  Google Scholar 

  21. Huang, Z.P., Sun, L.: Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech. 190(1), 151–163 (2007)

    Article  MATH  Google Scholar 

  22. Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers. Springer, Berlin (2007)

    MATH  Google Scholar 

  23. Khoroshun, L.P.: Methods of random functions in determining the macroscopic properties of microheterogeneous media. Prikl. Mech. 14(2), 113–124 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Khoroshun, L.P., Nazarenko, L.V.: Effective elastic properties of composites with disoriented anisotropic ellipsoidal inclusions. Int. Appl. Mech. 28(12), 801–808 (1992)

    Article  ADS  MATH  Google Scholar 

  25. Khoroshun, L.P., Maslov, B.P., Shikula, E.N., Nazarenko, L.V.: Statistical Mechanics and Effective Properties of Materials. Naukova dumka, Kiev (1993). (in Russian)

    Google Scholar 

  26. Kushch, V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L.: Elastic fields and effective moduli of particulate nanocomposites with the Gurtin–Murdoch model of interfaces. Int. J. Solids Struct. 50, 1141–1153 (2013)

    Article  Google Scholar 

  27. Lagowski, J., Gatos, H.C., Sproles Jr., E.S.: Surface stress and normal mode of vibration of thin crystal: GaAs. Appl. Phys. Lett. 26, 493 (1975)

    Article  ADS  Google Scholar 

  28. Lim, C.W., Li, Z.R., He, L.H.: Size-dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. Int. J. Solids Struct. 43, 5055–5065 (2006)

    Article  MATH  Google Scholar 

  29. Liu, C., Phani, A.S., Rajapakse, R.K.N.D.: Energy approach for nanoscale beams with surface effects. In: Cocks, A., Wang, J. (eds.) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, IUTAM Book Series (Closed), vol. 31, pp. 125–137. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  30. Mi, C., Kouris, D.A.: Nanoparticles under the influence of surface/interface elasticity. Mech. Mater. Struct. 1, 763–791 (2006)

    Article  Google Scholar 

  31. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  ADS  Google Scholar 

  32. Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56, 2298–2327 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Mogilevskaya, S.G., Crouch, S.L., Grotta, A.L., Stolarski, H.K.: The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites. Compos. Sci. Technol. 70, 427–434 (2010)

    Article  Google Scholar 

  34. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff, Dortrecht (1987)

    Book  MATH  Google Scholar 

  35. Nazarenko, L., Khoroshun, L., Müller, W.H., Wille, R.: Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components. Continuum Mech. Thermodyn. 20, 429–458 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Nazarenko, L., Bargmann, S., Stolarski, H.: Influence of interfaces on effective properties of nanomaterials with stochastically distributed spherical inclusions. Int. J. Solids Struct. 51, 954–966 (2014)

    Article  Google Scholar 

  37. Nazarenko, L., Bargmann, S., Stolarski, H.: Energy-equivalent inhomogeneity approach to analysis of effective properties of nano-materials with stochastic structure. Int. J. Solids Struct. 59, 183–197 (2015)

    Article  Google Scholar 

  38. Nazarenko, L., Bargmann, S., Stolarski, H.: Lurie solution for spherical particle and spring layer model of interphases: its application in analysis of effective properties of composites. Mech. Mater. 96, 39–52 (2016)

    Article  Google Scholar 

  39. Nazarenko, L., Stolarski, H.: Energy-based definition of equivalent inhomogeneity for various interphase models and analysis of effective properties of particulate composites. Compos. Part B 94, 82–94 (2016)

    Article  Google Scholar 

  40. Sarac, B., Wilmers, J., Bargmann, S.: Property optimization of metallic glasses via structural design. Mater. Lett. 134, 306–310 (2014)

    Article  Google Scholar 

  41. Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nanoinclusions incorporating surface/interface energies. J. Appl. Mech. 71, 663–671 (2004)

    Article  ADS  MATH  Google Scholar 

  42. Stolarski, H.K., Belytschko, T., Carpenter, N.: Bending and shear mode decomposition in \(\text{C}^{\rm o}\) structural elements. J. Struct. Mech. 11(2), 153–176 (1983)

    Article  Google Scholar 

  43. Stolarski, H.K., Belytschko, T., Lee, S.-H.: A review of shell finite elements and corotational theories. Comput. Mech. Adv. 2, 125–212 (1995)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, W.X., Wang, T.: Effect of surface energy on the yield strength of nanoporous materials. Appl. Phys. Lett. 90, Art. No. 063104 (2007)

  45. Weissmüller, J., Markmann, J., Grewer, M., Birringer, R.: Kinematics of polycrystal deformation by grain boundary sliding. Acta Mater. 59, 4366–4377 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidiia Nazarenko.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarenko, L., Bargmann, S. & Stolarski, H. Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin–Murdoch model of material surfaces. Continuum Mech. Thermodyn. 29, 77–96 (2017). https://doi.org/10.1007/s00161-016-0521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0521-2

Keywords

Navigation