Skip to main content
Log in

On the role of sharp chains in the transport theorem

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A generalized transport theorem for convecting irregular domains is presented in the setting of Federer’s geometric measure theory. A prototypical r-dimensional domain is viewed as a flat r-chain of finite mass in an open set of an n-dimensional Euclidean space. The evolution of such a generalized domain in time is assumed to follow a continuous succession of Lipschitz embedding so that the spatial gradient may be nonexistent in a subset of the domain with zero measure. The induced curve is shown to be continuous with respect to the flat norm and differential with respect to the sharp norm on currents in \({\mathbb{R}^{n}}\). A time-dependent property is naturally assigned to the evolving region via the action of an r-cochain on the current associated with the domain. Applying a representation theorem for cochains, the properties are shown to be locally represented by an r-form. Using these notions, a generalized transport theorem is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R., Marsden J.E., Ratiu T.: Manifolds, Tensor Analysis, and Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  2. Angenent S., Gurtin M.E.: Multiphase thermomechanics with interfacial structure 2. evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108, 323–391 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Betounes D.E.: Kinematics of submanifolds and the mean curvature normal. Arch. Ration. Mech. Anal. 96, 1–27 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouchut F., Crippa G.: Uniqueness, renormalization and smooth approximations for linear transport equations. SIAM J. Math. Anal. 4, 1316–1328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chi K.P., Quang N.H., Van B.C.: The Lie derivative of currents on Lie groups. Lobachevskii J. Math. 33(1), 10–21 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Falach, L., Segev, R.: The configuration space and principle of virtual power for rough bodies. Math. Mech. Solids. doi:10.1177/1081286513514244 (2013)

  7. Falach, L., Segev, R.: Reynolds transport theorem for smooth deformations of currents on manifolds. Accepted to Mathematics and Mechanics of Solids, doi:10.1177/1081286514551503 (2014)

  8. Federer, H.: Geometric Measure Theory. Springer, (1969)

  9. Fukui K., Nakamura T.: A topological property of Lipschitz mappings. Topol. Appl. 148, 143–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giaquinta, M., Modica, G., Soucek, J.: Cartesian Currents in the Calculus of Variation I. Springer, (1998)

  11. Golubitsky M., Guillemin V.: Stable Mappings and Their Singularities. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  12. Gurtin M.E.: Multiphase thermomechanics with interfacial structure 1. heat conduction and the capillary balance law. Arch. Ration. Mech. Anal. 104, 195–221 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, (2000)

  14. Gurtin M.E., Jabbour M.E.: Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: Interface-controlled evolution, phase transition, epitaxial growth of elastic films. Arch. Ration. Mech. Anal. 163, 171–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurtin M.E., Murduch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gurtin M.E., Struthers A.: Multiphase thermodynamics with interfacial structure 3. evolving phase boundaries in the presence of bulk deformation. Arch. Ration. Mech. Anal. 112, 97–160 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harrison J.: Operator calculus of differential chains and differential forms. J. Geometr. Anal. 25, 357–420 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. Harrison J., Pugh H.: Topological aspects of differential chains. J. Geometr. Anal. 22(3), 685–690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heinonen J.: Lectures on Analysis on Metric Spaces. Springer, Berlin (2000)

    MATH  Google Scholar 

  20. Hirsch M.W.: Differential Topology. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  21. Lang S.: Fundamentals of Differential Geometry. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  22. Struthers A., Gurtin M.E., Williams W.O.: A transport theorem for moving interfaces. Q. Appl. Math. 47, 773–777 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Michor P.W.: Manifolds of Differentiable Mappings. Shiva, New York (1980)

    MATH  Google Scholar 

  24. Noll W., Virga E.G.: Fit regions and functions of bounded variation. Arch. Ration. Mech. Anal. 102, 1–21 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reynolds, O.: The sub-mechanics of the universe. In Papers on Mechanical and Physical Subjects, volume III. Cambridge University Press, (1903)

  26. Segev R.: Notes on metric independent analysis of classical fields. Math. Methods Appl. Sci. 36, 497–566 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Seguin B., Fried E.: Roughening it - evolving irregular domains and transport theorem. Math. Methods Appl. Sci. 24, 1729–1779 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seguin B., Hinz D.F., Fried E.: Extending the transport theorem to rough domains of integration. Appl. Mech. Rev. 66(5), 050802 (2014)

    Article  ADS  Google Scholar 

  29. Truesdell, C.A., Toupin, R.: The classical field theories. In S. Flügge, editor, Handbuch der Physik, volume III/1. Springer, Berlin (1960)

  30. Whitney H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Segev.

Additional information

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell'Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falach, L., Segev, R. On the role of sharp chains in the transport theorem. Continuum Mech. Thermodyn. 28, 539–559 (2016). https://doi.org/10.1007/s00161-015-0461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0461-2

Keywords

Navigation