Skip to main content
Log in

Moment model and boundary conditions for energy transport in the phonon gas

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Heat transfer in solids is modeled in the framework of kinetic theory of the phonon gas. The microscopic description of the phonon gas relies on the phonon Boltzmann equation and the Callaway model for phonon–phonon interaction. A simple model for phonon interaction with crystal boundaries, similar to the Maxwell boundary conditions in classical kinetic theory, is proposed. Macroscopic transport equation for an arbitrary set of moments is developed and closed by means of Grad’s moment method. Boundary conditions for the macroscopic equations are derived from the microscopic model and the Grad closure. As example, sets with 4, 9, 16, and 25 moments are considered and solved analytically for one-dimensional heat transfer and Poiseuille flow of phonons. The results show the influence of Knudsen number on phonon drag at solid boundaries. The appearance of Knudsen layers reduces the net heat conductivity of solids in rarefied phonon regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romano V., Rusakov A.: 2d numerical simulations of an electron-phonon hydrodynamical model based on the maximum entropy principle. Comput. Methods Appl. Mech. Eng. 199, 2741–2751 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Kittel C.: Introduction to Solid State Physics, 7th edn. John Wiley & Sons, Hoboken (1996)

    Google Scholar 

  3. Snoke D.W.: Solid State Physics Essential Concepts. Addison-Wesley, San Francisco (2009)

    Google Scholar 

  4. Peraud J-P.M., Hadjiconstantinou N.G.: Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations. Phys. Rev. B 84, 205331 (2011)

    Article  ADS  Google Scholar 

  5. Grad H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dreyer W., Struchtrup H.: Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. Alvarez F.X., Jou D., Sellitto A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (2009)

    Article  ADS  Google Scholar 

  8. Sellitto A., Alvarez F.X., Jou D.: Second law of thermodynamics and phonon-boundary conditions in nanowires. J. Appl. Phys. 107, 064302 (2010). doi:10.1063/1.3309477

    Article  ADS  Google Scholar 

  9. Alvarez F.X., Cimmelli V.A., Jou D., Sellitto A.: Mesoscopic description of boundary effects in nanoscale heat transport. Nanoscale Syst. MMTA 1, 112–142 (2012)

    MATH  Google Scholar 

  10. Guyer R.A., Krumhansl J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)

    Article  ADS  Google Scholar 

  11. Guyer R.A., Krumhansl J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  ADS  Google Scholar 

  12. Callaway J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)

    Article  ADS  MATH  Google Scholar 

  13. Peierls R.: Zur kinetischen Theorie der Wärmeleitung in Kristallen. Annalen der Physik 3, 1055–1101 (1929)

    Article  ADS  MATH  Google Scholar 

  14. Debye P.: Zur Theorie der spezifischen Wärmen. Annalen der Physik 39, 789–839 (1912)

    Article  ADS  MATH  Google Scholar 

  15. Einstein A.: Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annalen der Physik 22, 180–190 (1907)

    ADS  MATH  Google Scholar 

  16. Klemens P.G.: Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966)

    Article  ADS  Google Scholar 

  17. Waldmann L.: Transporterscheinungen in Gasen von mittlerem Druck. In: Flügge, S. (ed.) Handbuch der Physik XII: Thermodynamik der Gase, Springer, Berlin (1958)

    Google Scholar 

  18. Struchtrup H.: Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  19. Müller I.: Thermodynamics. Pitman Publishing, Boston (1985)

    MATH  Google Scholar 

  20. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  ADS  MATH  Google Scholar 

  21. Fryer, M.: The Macroscopic Transport Equations of Phonons in Solids. MASc thesis, University of Victoria (2012)

  22. Torrilhon M., Struchtrup H.: Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227, 1982–2011 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Struchtrup H., Torrilhon M.: Higher-order effects in rarefied channel flows. Phys. Rev. E 78, 046301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hadjiconstantinou N.G.: Comment on Cercignani’s second-order slip coefficient. Phys. Fluids 15, 2352–2354 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  25. Struchtrup H.: Linear kinetic heat transfer: moment equations, boundary conditions, and Knudsen layers. Physica A 387, 1750–1766 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Taheri P., Torrilhon M., Struchtrup H.: Couette and Poiseuille flows in microchannels: analytical solutions for regularized 13-moment equations. Phys. Fluids 21, 017102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Johnson J.A., Maznev A.A., Cuffe J., Eilason J.K., Minnich A.J., Kehoe T., Sotomayor Torres C.M., Chen G., Nelson K.A.: Direct measurement of room temperature non-diffusive thermal transport over micron distance in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013)

    Article  ADS  Google Scholar 

  28. Struchtrup H., Taheri P.: Macroscopic transport models for rarefied gas flows: a brief review. IMA J. Appl. Math. 76, 672–697 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Struchtrup H., Torrilhon M.: Regularized 13 moment equations for hard sphere molecules: linear bulk equations. Phys. Fluids 25, 052001 (2013)

    Article  ADS  Google Scholar 

  30. Rana A.S., Torrilhon M., Struchtrup H.: A robust numerical method for the R13 equations of rarefied gas dynamics: application to lid driven cavity. J. Comput. Phys. 236, 169–186 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Struchtrup.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fryer, M.J., Struchtrup, H. Moment model and boundary conditions for energy transport in the phonon gas. Continuum Mech. Thermodyn. 26, 593–618 (2014). https://doi.org/10.1007/s00161-013-0320-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-013-0320-y

Keywords

Navigation